231 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace testing;
 | |
| using namespace perf;
 | |
| 
 | |
| #define GPU_DENOISING_IMAGE_SIZES testing::Values(perf::szVGA, perf::sz720p)
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BilateralFilter
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth, MatCn, int);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_KernelSz, Denoising_BilateralFilter,
 | |
|             Combine(GPU_DENOISING_IMAGE_SIZES,
 | |
|                     Values(CV_8U, CV_32F),
 | |
|                     GPU_CHANNELS_1_3,
 | |
|                     Values(3, 5, 9)))
 | |
| {
 | |
|     declare.time(60.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int kernel_size = GET_PARAM(3);
 | |
| 
 | |
|     const float sigma_color = 7;
 | |
|     const float sigma_spatial = 5;
 | |
|     const int borderMode = cv::BORDER_REFLECT101;
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         const cv::gpu::GpuMat d_src(src);
 | |
|         cv::gpu::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::gpu::bilateralFilter(d_src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
 | |
| 
 | |
|         GPU_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // nonLocalMeans
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans,
 | |
|             Combine(GPU_DENOISING_IMAGE_SIZES,
 | |
|                     Values<MatDepth>(CV_8U),
 | |
|                     GPU_CHANNELS_1_3,
 | |
|                     Values(21),
 | |
|                     Values(5)))
 | |
| {
 | |
|     declare.time(600.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int search_widow_size = GET_PARAM(3);
 | |
|     const int block_size = GET_PARAM(4);
 | |
| 
 | |
|     const float h = 10;
 | |
|     const int borderMode = cv::BORDER_REFLECT101;
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         const cv::gpu::GpuMat d_src(src);
 | |
|         cv::gpu::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::gpu::nonLocalMeans(d_src, dst, h, search_widow_size, block_size, borderMode);
 | |
| 
 | |
|         GPU_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // fastNonLocalMeans
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_FastNonLocalMeans,
 | |
|             Combine(GPU_DENOISING_IMAGE_SIZES,
 | |
|                     Values<MatDepth>(CV_8U),
 | |
|                     GPU_CHANNELS_1_3,
 | |
|                     Values(21),
 | |
|                     Values(7)))
 | |
| {
 | |
|     declare.time(60.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int search_widow_size = GET_PARAM(2);
 | |
|     const int block_size = GET_PARAM(3);
 | |
| 
 | |
|     const float h = 10;
 | |
|     const int type = CV_MAKE_TYPE(depth, 1);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::FastNonLocalMeansDenoising fnlmd;
 | |
| 
 | |
|         const cv::gpu::GpuMat d_src(src);
 | |
|         cv::gpu::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() fnlmd.simpleMethod(d_src, dst, h, search_widow_size, block_size);
 | |
| 
 | |
|         GPU_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // fastNonLocalMeans (colored)
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_WinSz_BlockSz, cv::Size, MatDepth, int, int);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_WinSz_BlockSz, Denoising_FastNonLocalMeansColored,
 | |
|             Combine(GPU_DENOISING_IMAGE_SIZES,
 | |
|                     Values<MatDepth>(CV_8U),
 | |
|                     Values(21),
 | |
|                     Values(7)))
 | |
| {
 | |
|     declare.time(60.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int search_widow_size = GET_PARAM(2);
 | |
|     const int block_size = GET_PARAM(3);
 | |
| 
 | |
|     const float h = 10;
 | |
|     const int type = CV_MAKE_TYPE(depth, 3);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::FastNonLocalMeansDenoising fnlmd;
 | |
| 
 | |
|         const cv::gpu::GpuMat d_src(src);
 | |
|         cv::gpu::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() fnlmd.labMethod(d_src, dst, h, h, search_widow_size, block_size);
 | |
| 
 | |
|         GPU_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | 
