134 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| import unittest
 | |
| import random
 | |
| import time
 | |
| import math
 | |
| import sys
 | |
| import array
 | |
| import urllib
 | |
| import tarfile
 | |
| import hashlib
 | |
| import os
 | |
| import getopt
 | |
| import operator
 | |
| import functools
 | |
| import numpy as np
 | |
| import cv2
 | |
| import cv2.cv as cv
 | |
| 
 | |
| class NewOpenCVTests(unittest.TestCase):
 | |
| 
 | |
|     def get_sample(self, filename, iscolor = cv.CV_LOAD_IMAGE_COLOR):
 | |
|         if not filename in self.image_cache:
 | |
|             filedata = urllib.urlopen("https://raw.github.com/Itseez/opencv/master/" + filename).read()
 | |
|             self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
 | |
|         return self.image_cache[filename]
 | |
| 
 | |
|     def setUp(self):
 | |
|         self.image_cache = {}
 | |
| 
 | |
|     def hashimg(self, im):
 | |
|         """ Compute a hash for an image, useful for image comparisons """
 | |
|         return hashlib.md5(im.tostring()).digest()
 | |
| 
 | |
|     if sys.version_info[:2] == (2, 6):
 | |
|         def assertLess(self, a, b, msg=None):
 | |
|             if not a < b:
 | |
|                 self.fail('%s not less than %s' % (repr(a), repr(b)))
 | |
| 
 | |
|         def assertLessEqual(self, a, b, msg=None):
 | |
|             if not a <= b:
 | |
|                 self.fail('%s not less than or equal to %s' % (repr(a), repr(b)))
 | |
| 
 | |
|         def assertGreater(self, a, b, msg=None):
 | |
|             if not a > b:
 | |
|                 self.fail('%s not greater than %s' % (repr(a), repr(b)))
 | |
| 
 | |
| # Tests to run first; check the handful of basic operations that the later tests rely on
 | |
| 
 | |
| class Hackathon244Tests(NewOpenCVTests):
 | |
| 
 | |
|     def test_int_array(self):
 | |
|         a = np.array([-1, 2, -3, 4, -5])
 | |
|         absa0 = np.abs(a)
 | |
|         self.assert_(cv2.norm(a, cv2.NORM_L1) == 15)
 | |
|         absa1 = cv2.absdiff(a, 0)
 | |
|         self.assertEqual(cv2.norm(absa1, absa0, cv2.NORM_INF), 0)
 | |
| 
 | |
|     def test_imencode(self):
 | |
|         a = np.zeros((480, 640), dtype=np.uint8)
 | |
|         flag, ajpg = cv2.imencode("img_q90.jpg", a, [cv2.IMWRITE_JPEG_QUALITY, 90])
 | |
|         self.assertEqual(flag, True)
 | |
|         self.assertEqual(ajpg.dtype, np.uint8)
 | |
|         self.assertGreater(ajpg.shape[0], 1)
 | |
|         self.assertEqual(ajpg.shape[1], 1)
 | |
| 
 | |
|     def test_projectPoints(self):
 | |
|         objpt = np.float64([[1,2,3]])
 | |
|         imgpt0, jac0 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
 | |
|         imgpt1, jac1 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
 | |
|         self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2))
 | |
|         self.assertEqual(imgpt1.shape, imgpt0.shape)
 | |
|         self.assertEqual(jac0.shape, jac1.shape)
 | |
|         self.assertEqual(jac0.shape[0], 2*objpt.shape[0])
 | |
| 
 | |
|     def test_estimateAffine3D(self):
 | |
|         pattern_size = (11, 8)
 | |
|         pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
 | |
|         pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
 | |
|         pattern_points *= 10
 | |
|         (retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
 | |
|         self.assertEqual(retval, 1)
 | |
|         if cv2.norm(out[2,:]) < 1e-3:
 | |
|             out[2,2]=1
 | |
|         self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
 | |
|         self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])
 | |
| 
 | |
|     def test_fast(self):
 | |
|         fd = cv2.FastFeatureDetector(30, True)
 | |
|         img = self.get_sample("samples/cpp/right02.jpg", 0)
 | |
|         img = cv2.medianBlur(img, 3)
 | |
|         imgc = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 | |
|         keypoints = fd.detect(img)
 | |
|         self.assert_(600 <= len(keypoints) <= 700)
 | |
|         for kpt in keypoints:
 | |
|             self.assertNotEqual(kpt.response, 0)
 | |
| 
 | |
|     def check_close_angles(self, a, b, angle_delta):
 | |
|         self.assert_(abs(a - b) <= angle_delta or
 | |
|                      abs(360 - abs(a - b)) <= angle_delta)
 | |
| 
 | |
|     def check_close_pairs(self, a, b, delta):
 | |
|         self.assertLessEqual(abs(a[0] - b[0]), delta)
 | |
|         self.assertLessEqual(abs(a[1] - b[1]), delta)
 | |
| 
 | |
|     def check_close_boxes(self, a, b, delta, angle_delta):
 | |
|         self.check_close_pairs(a[0], b[0], delta)
 | |
|         self.check_close_pairs(a[1], b[1], delta)
 | |
|         self.check_close_angles(a[2], b[2], angle_delta)
 | |
| 
 | |
|     def test_geometry(self):
 | |
|         npt = 100
 | |
|         np.random.seed(244)
 | |
|         a = np.random.randn(npt,2).astype('float32')*50 + 150
 | |
| 
 | |
|         img = np.zeros((300, 300, 3), dtype='uint8')
 | |
|         be = cv2.fitEllipse(a)
 | |
|         br = cv2.minAreaRect(a)
 | |
|         mc, mr = cv2.minEnclosingCircle(a)
 | |
| 
 | |
|         be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742)
 | |
|         br0 = ((161.2974090576172, 154.41793823242188), (199.2301483154297, 207.7177734375), -9.164555549621582)
 | |
|         mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977
 | |
| 
 | |
|         self.check_close_boxes(be, be0, 5, 15)
 | |
|         self.check_close_boxes(br, br0, 5, 15)
 | |
|         self.check_close_pairs(mc, mc0, 5)
 | |
|         self.assertLessEqual(abs(mr - mr0), 5)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     print "testing", cv2.__version__
 | |
|     random.seed(0)
 | |
|     unittest.main()
 | 
