423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			423 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef _OPENCV_FLANN_HPP_
 | 
						|
#define _OPENCV_FLANN_HPP_
 | 
						|
 | 
						|
#include "opencv2/core.hpp"
 | 
						|
#include "opencv2/flann/miniflann.hpp"
 | 
						|
#include "opencv2/flann/flann_base.hpp"
 | 
						|
 | 
						|
namespace cvflann
 | 
						|
{
 | 
						|
    CV_EXPORTS flann_distance_t flann_distance_type();
 | 
						|
    FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
namespace flann
 | 
						|
{
 | 
						|
 | 
						|
template <typename T> struct CvType {};
 | 
						|
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
 | 
						|
template <> struct CvType<char> { static int type() { return CV_8S; } };
 | 
						|
template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
 | 
						|
template <> struct CvType<short> { static int type() { return CV_16S; } };
 | 
						|
template <> struct CvType<int> { static int type() { return CV_32S; } };
 | 
						|
template <> struct CvType<float> { static int type() { return CV_32F; } };
 | 
						|
template <> struct CvType<double> { static int type() { return CV_64F; } };
 | 
						|
 | 
						|
 | 
						|
// bring the flann parameters into this namespace
 | 
						|
using ::cvflann::get_param;
 | 
						|
using ::cvflann::print_params;
 | 
						|
 | 
						|
// bring the flann distances into this namespace
 | 
						|
using ::cvflann::L2_Simple;
 | 
						|
using ::cvflann::L2;
 | 
						|
using ::cvflann::L1;
 | 
						|
using ::cvflann::MinkowskiDistance;
 | 
						|
using ::cvflann::MaxDistance;
 | 
						|
using ::cvflann::HammingLUT;
 | 
						|
using ::cvflann::Hamming;
 | 
						|
using ::cvflann::Hamming2;
 | 
						|
using ::cvflann::HistIntersectionDistance;
 | 
						|
using ::cvflann::HellingerDistance;
 | 
						|
using ::cvflann::ChiSquareDistance;
 | 
						|
using ::cvflann::KL_Divergence;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
class GenericIndex
 | 
						|
{
 | 
						|
public:
 | 
						|
        typedef typename Distance::ElementType ElementType;
 | 
						|
        typedef typename Distance::ResultType DistanceType;
 | 
						|
 | 
						|
        GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
 | 
						|
 | 
						|
        ~GenericIndex();
 | 
						|
 | 
						|
        void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 | 
						|
                       std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
 | 
						|
        void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
 | 
						|
 | 
						|
        int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 | 
						|
                         std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | 
						|
        int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
 | 
						|
                         DistanceType radius, const ::cvflann::SearchParams& params);
 | 
						|
 | 
						|
        void save(String filename) { nnIndex->save(filename); }
 | 
						|
 | 
						|
        int veclen() const { return nnIndex->veclen(); }
 | 
						|
 | 
						|
        int size() const { return nnIndex->size(); }
 | 
						|
 | 
						|
        ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
 | 
						|
 | 
						|
        FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
 | 
						|
 | 
						|
private:
 | 
						|
        ::cvflann::Index<Distance>* nnIndex;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#define FLANN_DISTANCE_CHECK \
 | 
						|
    if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
 | 
						|
        printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
 | 
						|
        "the distance using cvflann::set_distance_type. This is no longer working as expected "\
 | 
						|
        "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
 | 
						|
        "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
 | 
						|
{
 | 
						|
    CV_Assert(dataset.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(dataset.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 | 
						|
 | 
						|
    nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
 | 
						|
 | 
						|
    FLANN_DISTANCE_CHECK
 | 
						|
 | 
						|
    nnIndex->buildIndex();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
GenericIndex<Distance>::~GenericIndex()
 | 
						|
{
 | 
						|
    delete nnIndex;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | 
						|
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | 
						|
 | 
						|
    FLANN_DISTANCE_CHECK
 | 
						|
 | 
						|
    nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    CV_Assert(queries.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(queries.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 | 
						|
 | 
						|
    CV_Assert(indices.type() == CV_32S);
 | 
						|
    CV_Assert(indices.isContinuous());
 | 
						|
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | 
						|
 | 
						|
    CV_Assert(dists.type() == CvType<DistanceType>::type());
 | 
						|
    CV_Assert(dists.isContinuous());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | 
						|
 | 
						|
    FLANN_DISTANCE_CHECK
 | 
						|
 | 
						|
    nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | 
						|
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | 
						|
 | 
						|
    FLANN_DISTANCE_CHECK
 | 
						|
 | 
						|
    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    CV_Assert(query.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(query.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 | 
						|
 | 
						|
    CV_Assert(indices.type() == CV_32S);
 | 
						|
    CV_Assert(indices.isContinuous());
 | 
						|
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | 
						|
 | 
						|
    CV_Assert(dists.type() == CvType<DistanceType>::type());
 | 
						|
    CV_Assert(dists.isContinuous());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | 
						|
 | 
						|
    FLANN_DISTANCE_CHECK
 | 
						|
 | 
						|
    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @deprecated Use GenericIndex class instead
 | 
						|
 */
 | 
						|
template <typename T>
 | 
						|
class
 | 
						|
#ifndef _MSC_VER
 | 
						|
 FLANN_DEPRECATED
 | 
						|
#endif
 | 
						|
 Index_ {
 | 
						|
public:
 | 
						|
        typedef typename L2<T>::ElementType ElementType;
 | 
						|
        typedef typename L2<T>::ResultType DistanceType;
 | 
						|
 | 
						|
    Index_(const Mat& features, const ::cvflann::IndexParams& params);
 | 
						|
 | 
						|
    ~Index_();
 | 
						|
 | 
						|
    void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
 | 
						|
    void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
 | 
						|
 | 
						|
    int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | 
						|
    int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | 
						|
 | 
						|
    void save(String filename)
 | 
						|
        {
 | 
						|
            if (nnIndex_L1) nnIndex_L1->save(filename);
 | 
						|
            if (nnIndex_L2) nnIndex_L2->save(filename);
 | 
						|
        }
 | 
						|
 | 
						|
    int veclen() const
 | 
						|
    {
 | 
						|
            if (nnIndex_L1) return nnIndex_L1->veclen();
 | 
						|
            if (nnIndex_L2) return nnIndex_L2->veclen();
 | 
						|
        }
 | 
						|
 | 
						|
    int size() const
 | 
						|
    {
 | 
						|
            if (nnIndex_L1) return nnIndex_L1->size();
 | 
						|
            if (nnIndex_L2) return nnIndex_L2->size();
 | 
						|
        }
 | 
						|
 | 
						|
        ::cvflann::IndexParams getParameters()
 | 
						|
        {
 | 
						|
            if (nnIndex_L1) return nnIndex_L1->getParameters();
 | 
						|
            if (nnIndex_L2) return nnIndex_L2->getParameters();
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
 | 
						|
        {
 | 
						|
            if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
 | 
						|
            if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
 | 
						|
        }
 | 
						|
 | 
						|
private:
 | 
						|
        // providing backwards compatibility for L2 and L1 distances (most common)
 | 
						|
        ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
 | 
						|
        ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
template <typename T>
 | 
						|
class FLANN_DEPRECATED Index_;
 | 
						|
#endif
 | 
						|
 | 
						|
template <typename T>
 | 
						|
Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
 | 
						|
{
 | 
						|
    printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
 | 
						|
 | 
						|
    CV_Assert(dataset.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(dataset.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 | 
						|
 | 
						|
    if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 | 
						|
        nnIndex_L1 = NULL;
 | 
						|
        nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
 | 
						|
    }
 | 
						|
    else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 | 
						|
        nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
 | 
						|
        nnIndex_L2 = NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
 | 
						|
        "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
 | 
						|
        CV_Assert(0);
 | 
						|
    }
 | 
						|
    if (nnIndex_L1) nnIndex_L1->buildIndex();
 | 
						|
    if (nnIndex_L2) nnIndex_L2->buildIndex();
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
Index_<T>::~Index_()
 | 
						|
{
 | 
						|
    if (nnIndex_L1) delete nnIndex_L1;
 | 
						|
    if (nnIndex_L2) delete nnIndex_L2;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void Index_<T>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | 
						|
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | 
						|
 | 
						|
    if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | 
						|
    if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    CV_Assert(queries.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(queries.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 | 
						|
 | 
						|
    CV_Assert(indices.type() == CV_32S);
 | 
						|
    CV_Assert(indices.isContinuous());
 | 
						|
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | 
						|
 | 
						|
    CV_Assert(dists.type() == CvType<DistanceType>::type());
 | 
						|
    CV_Assert(dists.isContinuous());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | 
						|
 | 
						|
    if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | 
						|
    if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int Index_<T>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | 
						|
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | 
						|
 | 
						|
    if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
    if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | 
						|
{
 | 
						|
    CV_Assert(query.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(query.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 | 
						|
 | 
						|
    CV_Assert(indices.type() == CV_32S);
 | 
						|
    CV_Assert(indices.isContinuous());
 | 
						|
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | 
						|
 | 
						|
    CV_Assert(dists.type() == CvType<DistanceType>::type());
 | 
						|
    CV_Assert(dists.isContinuous());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | 
						|
 | 
						|
    if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
    if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename Distance>
 | 
						|
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
 | 
						|
                           Distance d = Distance())
 | 
						|
{
 | 
						|
    typedef typename Distance::ElementType ElementType;
 | 
						|
    typedef typename Distance::ResultType DistanceType;
 | 
						|
 | 
						|
    CV_Assert(features.type() == CvType<ElementType>::type());
 | 
						|
    CV_Assert(features.isContinuous());
 | 
						|
    ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
 | 
						|
 | 
						|
    CV_Assert(centers.type() == CvType<DistanceType>::type());
 | 
						|
    CV_Assert(centers.isContinuous());
 | 
						|
    ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
 | 
						|
 | 
						|
    return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename ELEM_TYPE, typename DIST_TYPE>
 | 
						|
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
 | 
						|
{
 | 
						|
    printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
 | 
						|
        "cv::flann::hierarchicalClustering<Distance> instead\n");
 | 
						|
 | 
						|
    if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 | 
						|
        return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
 | 
						|
    }
 | 
						|
    else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 | 
						|
        return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
 | 
						|
        "compatibility for the L1 and L2 distances. "
 | 
						|
        "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
 | 
						|
        CV_Assert(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
} } // namespace cv::flann
 | 
						|
 | 
						|
#endif
 |