310 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Jin Ma,        jin@multicorewareinc.com
 | |
| //    Xiaopeng Fu,   fuxiaopeng2222@163.com
 | |
| //    Erping Pang,   pang_er_ping@163.com
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_OPENCL
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace cv::ocl;
 | |
| using namespace cvtest;
 | |
| using namespace testing;
 | |
| 
 | |
| ///////K-NEAREST NEIGHBOR//////////////////////////
 | |
| 
 | |
| static void genTrainData(cv::RNG& rng, Mat& trainData, int trainDataRow, int trainDataCol,
 | |
|                          Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
 | |
| {
 | |
|     cv::Size size(trainDataCol, trainDataRow);
 | |
|     trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false);
 | |
|     if(nClasses != 0)
 | |
|     {
 | |
|         cv::Size size1(trainDataRow, 1);
 | |
|         trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false);
 | |
|         trainLabel.convertTo(trainLabel, CV_32FC1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(KNN, int, Size, int, bool)
 | |
| {
 | |
|     int k;
 | |
|     int trainDataCol;
 | |
|     int testDataRow;
 | |
|     int nClass;
 | |
|     bool regression;
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         k = GET_PARAM(0);
 | |
|         nClass = GET_PARAM(2);
 | |
|         trainDataCol = GET_PARAM(1).width;
 | |
|         testDataRow = GET_PARAM(1).height;
 | |
|         regression = GET_PARAM(3);
 | |
|     }
 | |
| };
 | |
| 
 | |
| OCL_TEST_P(KNN, Accuracy)
 | |
| {
 | |
|     Mat trainData, trainLabels;
 | |
|     const int trainDataRow = 500;
 | |
|     genTrainData(rng, trainData, trainDataRow, trainDataCol, trainLabels, nClass);
 | |
| 
 | |
|     Mat testData, testLabels;
 | |
|     genTrainData(rng, testData, testDataRow, trainDataCol);
 | |
| 
 | |
|     KNearestNeighbour knn_ocl;
 | |
|     CvKNearest knn_cpu;
 | |
|     Mat best_label_cpu;
 | |
|     oclMat best_label_ocl;
 | |
| 
 | |
|     /*ocl k-Nearest_Neighbor start*/
 | |
|     oclMat trainData_ocl;
 | |
|     trainData_ocl.upload(trainData);
 | |
|     Mat simpleIdx;
 | |
|     knn_ocl.train(trainData, trainLabels, simpleIdx, regression);
 | |
| 
 | |
|     oclMat testdata;
 | |
|     testdata.upload(testData);
 | |
|     knn_ocl.find_nearest(testdata, k, best_label_ocl);
 | |
|     /*ocl k-Nearest_Neighbor end*/
 | |
| 
 | |
|     /*cpu k-Nearest_Neighbor start*/
 | |
|     knn_cpu.train(trainData, trainLabels, simpleIdx, regression);
 | |
|     knn_cpu.find_nearest(testData, k, &best_label_cpu);
 | |
|     /*cpu k-Nearest_Neighbor end*/
 | |
|     if(regression)
 | |
|     {
 | |
|         EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
 | |
|     Values(4, 3), Values(false, true)));
 | |
| 
 | |
| ////////////////////////////////SVM/////////////////////////////////////////////////
 | |
| 
 | |
| PARAM_TEST_CASE(SVM_OCL, int, int, int)
 | |
| {
 | |
|     cv::Size size;
 | |
|     int kernel_type;
 | |
|     int svm_type;
 | |
|     Mat src, labels, samples, labels_predict;
 | |
|     int K;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
| 
 | |
|         kernel_type = GET_PARAM(0);
 | |
|         svm_type = GET_PARAM(1);
 | |
|         K = GET_PARAM(2);
 | |
|         cv::Size size = cv::Size(MWIDTH, MHEIGHT);
 | |
|         src.create(size, CV_32FC1);
 | |
|         labels.create(1, size.height, CV_32SC1);
 | |
|         int row_idx = 0;
 | |
|         const int max_number = size.height / K - 1;
 | |
|         CV_Assert(K <= size.height);
 | |
|         for(int i = 0; i < K; i++ )
 | |
|         {
 | |
|             Mat center_row_header = src.row(row_idx);
 | |
|             center_row_header.setTo(0);
 | |
|             int nchannel = center_row_header.channels();
 | |
|             for(int j = 0; j < nchannel; j++)
 | |
|             {
 | |
|                 center_row_header.at<float>(0, i * nchannel + j) = 500.0;
 | |
|             }
 | |
|             labels.at<int>(0, row_idx) = i;
 | |
|             for(int j = 0; (j < max_number) ||
 | |
|                     (i == K - 1 && j < max_number + size.height % K); j ++)
 | |
|             {
 | |
|                 Mat cur_row_header = src.row(row_idx + 1 + j);
 | |
|                 center_row_header.copyTo(cur_row_header);
 | |
|                 Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false);
 | |
|                 cur_row_header += tmpmat;
 | |
|                 labels.at<int>(0, row_idx + 1 + j) = i;
 | |
|             }
 | |
|             row_idx += 1 + max_number;
 | |
|         }
 | |
|         labels.convertTo(labels, CV_32FC1);
 | |
|         cv::Size test_size = cv::Size(MWIDTH, 100);
 | |
|         samples.create(test_size, CV_32FC1);
 | |
|         labels_predict.create(1, test_size.height, CV_32SC1);
 | |
|         const int max_number_test = test_size.height / K - 1;
 | |
|         row_idx = 0;
 | |
|         for(int i = 0; i < K; i++ )
 | |
|         {
 | |
|             Mat center_row_header = samples.row(row_idx);
 | |
|             center_row_header.setTo(0);
 | |
|             int nchannel = center_row_header.channels();
 | |
|             for(int j = 0; j < nchannel; j++)
 | |
|             {
 | |
|                 center_row_header.at<float>(0, i * nchannel + j) = 500.0;
 | |
|             }
 | |
|             labels_predict.at<int>(0, row_idx) = i;
 | |
|             for(int j = 0; (j < max_number_test) ||
 | |
|                     (i == K - 1 && j < max_number_test + test_size.height % K); j ++)
 | |
|             {
 | |
|                 Mat cur_row_header = samples.row(row_idx + 1 + j);
 | |
|                 center_row_header.copyTo(cur_row_header);
 | |
|                 Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false);
 | |
|                 cur_row_header += tmpmat;
 | |
|                 labels_predict.at<int>(0, row_idx + 1 + j) = i;
 | |
|             }
 | |
|             row_idx += 1 + max_number_test;
 | |
|         }
 | |
|         labels_predict.convertTo(labels_predict, CV_32FC1);
 | |
|     }
 | |
| };
 | |
| 
 | |
| OCL_TEST_P(SVM_OCL, Accuracy)
 | |
| {
 | |
|     CvSVMParams params;
 | |
|     params.degree = 0.4;
 | |
|     params.gamma = 1;
 | |
|     params.coef0 = 1;
 | |
|     params.C = 1;
 | |
|     params.nu = 0.5;
 | |
|     params.p = 1;
 | |
|     params.svm_type = svm_type;
 | |
|     params.kernel_type = kernel_type;
 | |
| 
 | |
|     params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001);
 | |
| 
 | |
|     CvSVM SVM;
 | |
|     SVM.train(src, labels, Mat(), Mat(), params);
 | |
| 
 | |
|     cv::ocl::CvSVM_OCL SVM_OCL;
 | |
|     SVM_OCL.train(src, labels, Mat(), Mat(), params);
 | |
| 
 | |
|     int c = SVM.get_support_vector_count();
 | |
|     int c1 = SVM_OCL.get_support_vector_count();
 | |
| 
 | |
|     Mat sv(c, MHEIGHT, CV_32FC1);
 | |
|     Mat sv_ocl(c1, MHEIGHT, CV_32FC1);
 | |
|     for(int i = 0; i < c; i++)
 | |
|     {
 | |
|         const float* v = SVM.get_support_vector(i);
 | |
| 
 | |
|         for(int j = 0; j < MHEIGHT; j++)
 | |
|         {
 | |
|             sv.at<float>(i, j) = v[j];
 | |
|         }
 | |
|     }
 | |
|     for(int i = 0; i < c1; i++)
 | |
|     {
 | |
|         const float* v_ocl = SVM_OCL.get_support_vector(i);
 | |
| 
 | |
|         for(int j = 0; j < MHEIGHT; j++)
 | |
|         {
 | |
|             sv_ocl.at<float>(i, j) = v_ocl[j];
 | |
|         }
 | |
|     }
 | |
|     cv::BFMatcher matcher(cv::NORM_L2);
 | |
|     std::vector<cv::DMatch> matches;
 | |
|     matcher.match(sv, sv_ocl, matches);
 | |
|     int count = 0;
 | |
| 
 | |
|     for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++)
 | |
|     {
 | |
|         if((*itr).distance < 0.1)
 | |
|         {
 | |
|             count ++;
 | |
|         }
 | |
|     }
 | |
|     if(c != 0)
 | |
|     {
 | |
|         float matchedRatio = (float)count / c;
 | |
|         EXPECT_GT(matchedRatio, 0.95);
 | |
|     }
 | |
|     if(c != 0)
 | |
|     {
 | |
|         CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1);
 | |
|         CvMat test_samples = samples;
 | |
| 
 | |
|         CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1);
 | |
| 
 | |
|         SVM.predict(&test_samples, result);
 | |
| 
 | |
|         SVM_OCL.predict(&test_samples, result_ocl);
 | |
| 
 | |
|         int true_resp = 0, true_resp_ocl = 0;
 | |
|         for (int i = 0; i < samples.rows; i++)
 | |
|         {
 | |
|             if (result->data.fl[i] == labels_predict.at<float>(0, i))
 | |
|             {
 | |
|                 true_resp++;
 | |
|             }
 | |
|         }
 | |
|         float matchedRatio = (float)true_resp / samples.rows;
 | |
| 
 | |
|         for (int i = 0; i < samples.rows; i++)
 | |
|         {
 | |
|             if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i))
 | |
|             {
 | |
|                 true_resp_ocl++;
 | |
|             }
 | |
|         }
 | |
|         float matchedRatio_ocl = (float)true_resp_ocl / samples.rows;
 | |
| 
 | |
|         if(matchedRatio != 0 && true_resp_ocl < true_resp)
 | |
|         {
 | |
|             EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // TODO FIXIT: CvSVM::EPS_SVR case is crashed inside CPU implementation
 | |
| // Anonymous enums are not supported well so cast them to 'int'
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
 | |
|                             Values((int)CvSVM::LINEAR, (int)CvSVM::POLY, (int)CvSVM::RBF, (int)CvSVM::SIGMOID),
 | |
|                             Values((int)CvSVM::C_SVC, (int)CvSVM::NU_SVC, (int)CvSVM::ONE_CLASS, (int)CvSVM::NU_SVR),
 | |
|                             Values(2, 3, 4)
 | |
|                         ));
 | |
| 
 | |
| #endif // HAVE_OPENCL
 | 
