133 lines
4.6 KiB
C++
133 lines
4.6 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
class CV_FastTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_FastTest();
|
|
~CV_FastTest();
|
|
protected:
|
|
void run(int);
|
|
};
|
|
|
|
CV_FastTest::CV_FastTest() {}
|
|
CV_FastTest::~CV_FastTest() {}
|
|
|
|
void CV_FastTest::run( int )
|
|
{
|
|
for(int type=0; type <= 2; ++type) {
|
|
Mat image1 = imread(string(ts->get_data_path()) + "inpaint/orig.jpg");
|
|
Mat image2 = imread(string(ts->get_data_path()) + "cameracalibration/chess9.jpg");
|
|
string xml = string(ts->get_data_path()) + "fast/result.xml";
|
|
|
|
if (image1.empty() || image2.empty())
|
|
{
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
return;
|
|
}
|
|
|
|
Mat gray1, gray2;
|
|
cvtColor(image1, gray1, CV_BGR2GRAY);
|
|
cvtColor(image2, gray2, CV_BGR2GRAY);
|
|
|
|
vector<KeyPoint> keypoints1;
|
|
vector<KeyPoint> keypoints2;
|
|
FAST(gray1, keypoints1, 30, true, type);
|
|
FAST(gray2, keypoints2, 30, true, type);
|
|
|
|
for(size_t i = 0; i < keypoints1.size(); ++i)
|
|
{
|
|
const KeyPoint& kp = keypoints1[i];
|
|
cv::circle(image1, kp.pt, cvRound(kp.size/2), CV_RGB(255, 0, 0));
|
|
}
|
|
|
|
for(size_t i = 0; i < keypoints2.size(); ++i)
|
|
{
|
|
const KeyPoint& kp = keypoints2[i];
|
|
cv::circle(image2, kp.pt, cvRound(kp.size/2), CV_RGB(255, 0, 0));
|
|
}
|
|
|
|
Mat kps1(1, (int)(keypoints1.size() * sizeof(KeyPoint)), CV_8U, &keypoints1[0]);
|
|
Mat kps2(1, (int)(keypoints2.size() * sizeof(KeyPoint)), CV_8U, &keypoints2[0]);
|
|
|
|
FileStorage fs(xml, FileStorage::READ);
|
|
if (!fs.isOpened())
|
|
{
|
|
fs.open(xml, FileStorage::WRITE);
|
|
fs << "exp_kps1" << kps1;
|
|
fs << "exp_kps2" << kps2;
|
|
fs.release();
|
|
}
|
|
|
|
if (!fs.isOpened())
|
|
fs.open(xml, FileStorage::READ);
|
|
|
|
Mat exp_kps1, exp_kps2;
|
|
read( fs["exp_kps1"], exp_kps1, Mat() );
|
|
read( fs["exp_kps2"], exp_kps2, Mat() );
|
|
fs.release();
|
|
|
|
// We only have testing data for 9_16 but it actually works equally well for 7_12
|
|
if ((type==1) || (type==2)){
|
|
if ( exp_kps1.size != kps1.size || 0 != norm(exp_kps1, kps1, NORM_L2) ||
|
|
exp_kps2.size != kps2.size || 0 != norm(exp_kps2, kps2, NORM_L2))
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*cv::namedWindow("Img1"); cv::imshow("Img1", image1);
|
|
cv::namedWindow("Img2"); cv::imshow("Img2", image2);
|
|
cv::waitKey(0);*/
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
}
|
|
|
|
TEST(Features2d_FAST, regression) { CV_FastTest test; test.safe_run(); }
|
|
|