449 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			449 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "clapack.h"
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__0 = 0;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b32 = 1.;
 | |
| 
 | |
| /* Subroutine */ int dsterf_(integer *n, doublereal *d__, doublereal *e, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     doublereal d__1, d__2, d__3;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal c__;
 | |
|     integer i__, l, m;
 | |
|     doublereal p, r__, s;
 | |
|     integer l1;
 | |
|     doublereal bb, rt1, rt2, eps, rte;
 | |
|     integer lsv;
 | |
|     doublereal eps2, oldc;
 | |
|     integer lend, jtot;
 | |
|     extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 
 | |
| 	    *, doublereal *, doublereal *);
 | |
|     doublereal gamma, alpha, sigma, anorm;
 | |
|     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
 | |
|     integer iscale;
 | |
|     extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *);
 | |
|     doublereal oldgam, safmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
|     doublereal safmax;
 | |
|     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     integer lendsv;
 | |
|     doublereal ssfmin;
 | |
|     integer nmaxit;
 | |
|     doublereal ssfmax;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.1) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
 | |
| /*  using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix.  N >= 0. */
 | |
| 
 | |
| /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the n diagonal elements of the tridiagonal matrix. */
 | |
| /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
 | |
| 
 | |
| /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 | |
| /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 | |
| /*          matrix. */
 | |
| /*          On exit, E has been destroyed. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0:  successful exit */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /*          > 0:  the algorithm failed to find all of the eigenvalues in */
 | |
| /*                a total of 30*N iterations; if INFO = i, then i */
 | |
| /*                elements of E have not converged to zero. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --e;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSTERF", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
|     if (*n <= 1) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Determine the unit roundoff for this environment. */
 | |
| 
 | |
|     eps = dlamch_("E");
 | |
| /* Computing 2nd power */
 | |
|     d__1 = eps;
 | |
|     eps2 = d__1 * d__1;
 | |
|     safmin = dlamch_("S");
 | |
|     safmax = 1. / safmin;
 | |
|     ssfmax = sqrt(safmax) / 3.;
 | |
|     ssfmin = sqrt(safmin) / eps2;
 | |
| 
 | |
| /*     Compute the eigenvalues of the tridiagonal matrix. */
 | |
| 
 | |
|     nmaxit = *n * 30;
 | |
|     sigma = 0.;
 | |
|     jtot = 0;
 | |
| 
 | |
| /*     Determine where the matrix splits and choose QL or QR iteration */
 | |
| /*     for each block, according to whether top or bottom diagonal */
 | |
| /*     element is smaller. */
 | |
| 
 | |
|     l1 = 1;
 | |
| 
 | |
| L10:
 | |
|     if (l1 > *n) {
 | |
| 	goto L170;
 | |
|     }
 | |
|     if (l1 > 1) {
 | |
| 	e[l1 - 1] = 0.;
 | |
|     }
 | |
|     i__1 = *n - 1;
 | |
|     for (m = l1; m <= i__1; ++m) {
 | |
| 	if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) * 
 | |
| 		sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
 | |
| 	    e[m] = 0.;
 | |
| 	    goto L30;
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
|     m = *n;
 | |
| 
 | |
| L30:
 | |
|     l = l1;
 | |
|     lsv = l;
 | |
|     lend = m;
 | |
|     lendsv = lend;
 | |
|     l1 = m + 1;
 | |
|     if (lend == l) {
 | |
| 	goto L10;
 | |
|     }
 | |
| 
 | |
| /*     Scale submatrix in rows and columns L to LEND */
 | |
| 
 | |
|     i__1 = lend - l + 1;
 | |
|     anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
 | |
|     iscale = 0;
 | |
|     if (anorm > ssfmax) {
 | |
| 	iscale = 1;
 | |
| 	i__1 = lend - l + 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
 | |
| 		info);
 | |
| 	i__1 = lend - l;
 | |
| 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
 | |
| 		info);
 | |
|     } else if (anorm < ssfmin) {
 | |
| 	iscale = 2;
 | |
| 	i__1 = lend - l + 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
 | |
| 		info);
 | |
| 	i__1 = lend - l;
 | |
| 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
 | |
| 		info);
 | |
|     }
 | |
| 
 | |
|     i__1 = lend - 1;
 | |
|     for (i__ = l; i__ <= i__1; ++i__) {
 | |
| /* Computing 2nd power */
 | |
| 	d__1 = e[i__];
 | |
| 	e[i__] = d__1 * d__1;
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
| /*     Choose between QL and QR iteration */
 | |
| 
 | |
|     if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
 | |
| 	lend = lsv;
 | |
| 	l = lendsv;
 | |
|     }
 | |
| 
 | |
|     if (lend >= l) {
 | |
| 
 | |
| /*        QL Iteration */
 | |
| 
 | |
| /*        Look for small subdiagonal element. */
 | |
| 
 | |
| L50:
 | |
| 	if (l != lend) {
 | |
| 	    i__1 = lend - 1;
 | |
| 	    for (m = l; m <= i__1; ++m) {
 | |
| 		if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
 | |
| 			+ 1], abs(d__1))) {
 | |
| 		    goto L70;
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	}
 | |
| 	m = lend;
 | |
| 
 | |
| L70:
 | |
| 	if (m < lend) {
 | |
| 	    e[m] = 0.;
 | |
| 	}
 | |
| 	p = d__[l];
 | |
| 	if (m == l) {
 | |
| 	    goto L90;
 | |
| 	}
 | |
| 
 | |
| /*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
 | |
| /*        eigenvalues. */
 | |
| 
 | |
| 	if (m == l + 1) {
 | |
| 	    rte = sqrt(e[l]);
 | |
| 	    dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
 | |
| 	    d__[l] = rt1;
 | |
| 	    d__[l + 1] = rt2;
 | |
| 	    e[l] = 0.;
 | |
| 	    l += 2;
 | |
| 	    if (l <= lend) {
 | |
| 		goto L50;
 | |
| 	    }
 | |
| 	    goto L150;
 | |
| 	}
 | |
| 
 | |
| 	if (jtot == nmaxit) {
 | |
| 	    goto L150;
 | |
| 	}
 | |
| 	++jtot;
 | |
| 
 | |
| /*        Form shift. */
 | |
| 
 | |
| 	rte = sqrt(e[l]);
 | |
| 	sigma = (d__[l + 1] - p) / (rte * 2.);
 | |
| 	r__ = dlapy2_(&sigma, &c_b32);
 | |
| 	sigma = p - rte / (sigma + d_sign(&r__, &sigma));
 | |
| 
 | |
| 	c__ = 1.;
 | |
| 	s = 0.;
 | |
| 	gamma = d__[m] - sigma;
 | |
| 	p = gamma * gamma;
 | |
| 
 | |
| /*        Inner loop */
 | |
| 
 | |
| 	i__1 = l;
 | |
| 	for (i__ = m - 1; i__ >= i__1; --i__) {
 | |
| 	    bb = e[i__];
 | |
| 	    r__ = p + bb;
 | |
| 	    if (i__ != m - 1) {
 | |
| 		e[i__ + 1] = s * r__;
 | |
| 	    }
 | |
| 	    oldc = c__;
 | |
| 	    c__ = p / r__;
 | |
| 	    s = bb / r__;
 | |
| 	    oldgam = gamma;
 | |
| 	    alpha = d__[i__];
 | |
| 	    gamma = c__ * (alpha - sigma) - s * oldgam;
 | |
| 	    d__[i__ + 1] = oldgam + (alpha - gamma);
 | |
| 	    if (c__ != 0.) {
 | |
| 		p = gamma * gamma / c__;
 | |
| 	    } else {
 | |
| 		p = oldc * bb;
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
| 
 | |
| 	e[l] = s * p;
 | |
| 	d__[l] = sigma + gamma;
 | |
| 	goto L50;
 | |
| 
 | |
| /*        Eigenvalue found. */
 | |
| 
 | |
| L90:
 | |
| 	d__[l] = p;
 | |
| 
 | |
| 	++l;
 | |
| 	if (l <= lend) {
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 	goto L150;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        QR Iteration */
 | |
| 
 | |
| /*        Look for small superdiagonal element. */
 | |
| 
 | |
| L100:
 | |
| 	i__1 = lend + 1;
 | |
| 	for (m = l; m >= i__1; --m) {
 | |
| 	    if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
 | |
| 		    - 1], abs(d__1))) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| /* L110: */
 | |
| 	}
 | |
| 	m = lend;
 | |
| 
 | |
| L120:
 | |
| 	if (m > lend) {
 | |
| 	    e[m - 1] = 0.;
 | |
| 	}
 | |
| 	p = d__[l];
 | |
| 	if (m == l) {
 | |
| 	    goto L140;
 | |
| 	}
 | |
| 
 | |
| /*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
 | |
| /*        eigenvalues. */
 | |
| 
 | |
| 	if (m == l - 1) {
 | |
| 	    rte = sqrt(e[l - 1]);
 | |
| 	    dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
 | |
| 	    d__[l] = rt1;
 | |
| 	    d__[l - 1] = rt2;
 | |
| 	    e[l - 1] = 0.;
 | |
| 	    l += -2;
 | |
| 	    if (l >= lend) {
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 	    goto L150;
 | |
| 	}
 | |
| 
 | |
| 	if (jtot == nmaxit) {
 | |
| 	    goto L150;
 | |
| 	}
 | |
| 	++jtot;
 | |
| 
 | |
| /*        Form shift. */
 | |
| 
 | |
| 	rte = sqrt(e[l - 1]);
 | |
| 	sigma = (d__[l - 1] - p) / (rte * 2.);
 | |
| 	r__ = dlapy2_(&sigma, &c_b32);
 | |
| 	sigma = p - rte / (sigma + d_sign(&r__, &sigma));
 | |
| 
 | |
| 	c__ = 1.;
 | |
| 	s = 0.;
 | |
| 	gamma = d__[m] - sigma;
 | |
| 	p = gamma * gamma;
 | |
| 
 | |
| /*        Inner loop */
 | |
| 
 | |
| 	i__1 = l - 1;
 | |
| 	for (i__ = m; i__ <= i__1; ++i__) {
 | |
| 	    bb = e[i__];
 | |
| 	    r__ = p + bb;
 | |
| 	    if (i__ != m) {
 | |
| 		e[i__ - 1] = s * r__;
 | |
| 	    }
 | |
| 	    oldc = c__;
 | |
| 	    c__ = p / r__;
 | |
| 	    s = bb / r__;
 | |
| 	    oldgam = gamma;
 | |
| 	    alpha = d__[i__ + 1];
 | |
| 	    gamma = c__ * (alpha - sigma) - s * oldgam;
 | |
| 	    d__[i__] = oldgam + (alpha - gamma);
 | |
| 	    if (c__ != 0.) {
 | |
| 		p = gamma * gamma / c__;
 | |
| 	    } else {
 | |
| 		p = oldc * bb;
 | |
| 	    }
 | |
| /* L130: */
 | |
| 	}
 | |
| 
 | |
| 	e[l - 1] = s * p;
 | |
| 	d__[l] = sigma + gamma;
 | |
| 	goto L100;
 | |
| 
 | |
| /*        Eigenvalue found. */
 | |
| 
 | |
| L140:
 | |
| 	d__[l] = p;
 | |
| 
 | |
| 	--l;
 | |
| 	if (l >= lend) {
 | |
| 	    goto L100;
 | |
| 	}
 | |
| 	goto L150;
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
| L150:
 | |
|     if (iscale == 1) {
 | |
| 	i__1 = lendsv - lsv + 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
 | |
| 		n, info);
 | |
|     }
 | |
|     if (iscale == 2) {
 | |
| 	i__1 = lendsv - lsv + 1;
 | |
| 	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
 | |
| 		n, info);
 | |
|     }
 | |
| 
 | |
| /*     Check for no convergence to an eigenvalue after a total */
 | |
| /*     of N*MAXIT iterations. */
 | |
| 
 | |
|     if (jtot < nmaxit) {
 | |
| 	goto L10;
 | |
|     }
 | |
|     i__1 = *n - 1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if (e[i__] != 0.) {
 | |
| 	    ++(*info);
 | |
| 	}
 | |
| /* L160: */
 | |
|     }
 | |
|     goto L180;
 | |
| 
 | |
| /*     Sort eigenvalues in increasing order. */
 | |
| 
 | |
| L170:
 | |
|     dlasrt_("I", n, &d__[1], info);
 | |
| 
 | |
| L180:
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DSTERF */
 | |
| 
 | |
| } /* dsterf_ */
 | 
