998 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			998 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "clapack.h"
 | |
| 
 | |
| /* Subroutine */ int dlasd4_(integer *n, integer *i__, doublereal *d__, 
 | |
| 	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
 | |
| 	sigma, doublereal *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal a, b, c__;
 | |
|     integer j;
 | |
|     doublereal w, dd[3];
 | |
|     integer ii;
 | |
|     doublereal dw, zz[3];
 | |
|     integer ip1;
 | |
|     doublereal eta, phi, eps, tau, psi;
 | |
|     integer iim1, iip1;
 | |
|     doublereal dphi, dpsi;
 | |
|     integer iter;
 | |
|     doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq, dtiip;
 | |
|     integer niter;
 | |
|     doublereal dtisq;
 | |
|     logical swtch;
 | |
|     doublereal dtnsq;
 | |
|     extern /* Subroutine */ int dlaed6_(integer *, logical *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)
 | |
| 	    , dlasd5_(integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *);
 | |
|     doublereal delsq2, dtnsq1;
 | |
|     logical swtch3;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     logical orgati;
 | |
|     doublereal erretm, dtipsq, rhoinv;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.1) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  This subroutine computes the square root of the I-th updated */
 | |
| /*  eigenvalue of a positive symmetric rank-one modification to */
 | |
| /*  a positive diagonal matrix whose entries are given as the squares */
 | |
| /*  of the corresponding entries in the array d, and that */
 | |
| 
 | |
| /*         0 <= D(i) < D(j)  for  i < j */
 | |
| 
 | |
| /*  and that RHO > 0. This is arranged by the calling routine, and is */
 | |
| /*  no loss in generality.  The rank-one modified system is thus */
 | |
| 
 | |
| /*         diag( D ) * diag( D ) +  RHO *  Z * Z_transpose. */
 | |
| 
 | |
| /*  where we assume the Euclidean norm of Z is 1. */
 | |
| 
 | |
| /*  The method consists of approximating the rational functions in the */
 | |
| /*  secular equation by simpler interpolating rational functions. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  N      (input) INTEGER */
 | |
| /*         The length of all arrays. */
 | |
| 
 | |
| /*  I      (input) INTEGER */
 | |
| /*         The index of the eigenvalue to be computed.  1 <= I <= N. */
 | |
| 
 | |
| /*  D      (input) DOUBLE PRECISION array, dimension ( N ) */
 | |
| /*         The original eigenvalues.  It is assumed that they are in */
 | |
| /*         order, 0 <= D(I) < D(J)  for I < J. */
 | |
| 
 | |
| /*  Z      (input) DOUBLE PRECISION array, dimension ( N ) */
 | |
| /*         The components of the updating vector. */
 | |
| 
 | |
| /*  DELTA  (output) DOUBLE PRECISION array, dimension ( N ) */
 | |
| /*         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th */
 | |
| /*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA */
 | |
| /*         contains the information necessary to construct the */
 | |
| /*         (singular) eigenvectors. */
 | |
| 
 | |
| /*  RHO    (input) DOUBLE PRECISION */
 | |
| /*         The scalar in the symmetric updating formula. */
 | |
| 
 | |
| /*  SIGMA  (output) DOUBLE PRECISION */
 | |
| /*         The computed sigma_I, the I-th updated eigenvalue. */
 | |
| 
 | |
| /*  WORK   (workspace) DOUBLE PRECISION array, dimension ( N ) */
 | |
| /*         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th */
 | |
| /*         component.  If N = 1, then WORK( 1 ) = 1. */
 | |
| 
 | |
| /*  INFO   (output) INTEGER */
 | |
| /*         = 0:  successful exit */
 | |
| /*         > 0:  if INFO = 1, the updating process failed. */
 | |
| 
 | |
| /*  Internal Parameters */
 | |
| /*  =================== */
 | |
| 
 | |
| /*  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 | |
| /*  whether D(i) or D(i+1) is treated as the origin. */
 | |
| 
 | |
| /*            ORGATI = .true.    origin at i */
 | |
| /*            ORGATI = .false.   origin at i+1 */
 | |
| 
 | |
| /*  Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 | |
| /*  if we are working with THREE poles! */
 | |
| 
 | |
| /*  MAXIT is the maximum number of iterations allowed for each */
 | |
| /*  eigenvalue. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Ren-Cang Li, Computer Science Division, University of California */
 | |
| /*     at Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. Local Arrays .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Since this routine is called in an inner loop, we do no argument */
 | |
| /*     checking. */
 | |
| 
 | |
| /*     Quick return for N=1 and 2. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --work;
 | |
|     --delta;
 | |
|     --z__;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (*n == 1) {
 | |
| 
 | |
| /*        Presumably, I=1 upon entry */
 | |
| 
 | |
| 	*sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
 | |
| 	delta[1] = 1.;
 | |
| 	work[1] = 1.;
 | |
| 	return 0;
 | |
|     }
 | |
|     if (*n == 2) {
 | |
| 	dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Compute machine epsilon */
 | |
| 
 | |
|     eps = dlamch_("Epsilon");
 | |
|     rhoinv = 1. / *rho;
 | |
| 
 | |
| /*     The case I = N */
 | |
| 
 | |
|     if (*i__ == *n) {
 | |
| 
 | |
| /*        Initialize some basic variables */
 | |
| 
 | |
| 	ii = *n - 1;
 | |
| 	niter = 1;
 | |
| 
 | |
| /*        Calculate initial guess */
 | |
| 
 | |
| 	temp = *rho / 2.;
 | |
| 
 | |
| /*        If ||Z||_2 is not one, then TEMP should be set to */
 | |
| /*        RHO * ||Z||_2^2 / TWO */
 | |
| 
 | |
| 	temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    work[j] = d__[j] + d__[*n] + temp1;
 | |
| 	    delta[j] = d__[j] - d__[*n] - temp1;
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| 	psi = 0.;
 | |
| 	i__1 = *n - 2;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    psi += z__[j] * z__[j] / (delta[j] * work[j]);
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| 	c__ = rhoinv + psi;
 | |
| 	w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
 | |
| 		n] / (delta[*n] * work[*n]);
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    temp1 = sqrt(d__[*n] * d__[*n] + *rho);
 | |
| 	    temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
 | |
| 		    n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * 
 | |
| 		    z__[*n] / *rho;
 | |
| 
 | |
| /*           The following TAU is to approximate */
 | |
| /*           SIGMA_n^2 - D( N )*D( N ) */
 | |
| 
 | |
| 	    if (c__ <= temp) {
 | |
| 		tau = *rho;
 | |
| 	    } else {
 | |
| 		delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 | |
| 		a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
 | |
| 			n];
 | |
| 		b = z__[*n] * z__[*n] * delsq;
 | |
| 		if (a < 0.) {
 | |
| 		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | |
| 		} else {
 | |
| 		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           It can be proved that */
 | |
| /*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO */
 | |
| 
 | |
| 	} else {
 | |
| 	    delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 | |
| 	    a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 | |
| 	    b = z__[*n] * z__[*n] * delsq;
 | |
| 
 | |
| /*           The following TAU is to approximate */
 | |
| /*           SIGMA_n^2 - D( N )*D( N ) */
 | |
| 
 | |
| 	    if (a < 0.) {
 | |
| 		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | |
| 	    } else {
 | |
| 		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | |
| 	    }
 | |
| 
 | |
| /*           It can be proved that */
 | |
| /*           D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2 */
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*        The following ETA is to approximate SIGMA_n - D( N ) */
 | |
| 
 | |
| 	eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
 | |
| 
 | |
| 	*sigma = d__[*n] + eta;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] = d__[j] - d__[*i__] - eta;
 | |
| 	    work[j] = d__[j] + d__[*i__] + eta;
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = ii;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / (delta[j] * work[j]);
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L40: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	temp = z__[*n] / (delta[*n] * work[*n]);
 | |
| 	phi = z__[*n] * temp;
 | |
| 	dphi = temp * temp;
 | |
| 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | |
| 		+ dphi);
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        Test for convergence */
 | |
| 
 | |
| 	if (abs(w) <= eps * erretm) {
 | |
| 	    goto L240;
 | |
| 	}
 | |
| 
 | |
| /*        Calculate the new step */
 | |
| 
 | |
| 	++niter;
 | |
| 	dtnsq1 = work[*n - 1] * delta[*n - 1];
 | |
| 	dtnsq = work[*n] * delta[*n];
 | |
| 	c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 | |
| 	a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
 | |
| 	b = dtnsq * dtnsq1 * w;
 | |
| 	if (c__ < 0.) {
 | |
| 	    c__ = abs(c__);
 | |
| 	}
 | |
| 	if (c__ == 0.) {
 | |
| 	    eta = *rho - *sigma * *sigma;
 | |
| 	} else if (a >= 0.) {
 | |
| 	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 
 | |
| 		    * 2.);
 | |
| 	} else {
 | |
| 	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
 | |
| 		    );
 | |
| 	}
 | |
| 
 | |
| /*        Note, eta should be positive if w is negative, and */
 | |
| /*        eta should be negative otherwise. However, */
 | |
| /*        if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*        we simply use one Newton step instead. This way */
 | |
| /*        will guarantee eta*w < 0. */
 | |
| 
 | |
| 	if (w * eta > 0.) {
 | |
| 	    eta = -w / (dpsi + dphi);
 | |
| 	}
 | |
| 	temp = eta - dtnsq;
 | |
| 	if (temp > *rho) {
 | |
| 	    eta = *rho + dtnsq;
 | |
| 	}
 | |
| 
 | |
| 	tau += eta;
 | |
| 	eta /= *sigma + sqrt(eta + *sigma * *sigma);
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    delta[j] -= eta;
 | |
| 	    work[j] += eta;
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
| 	*sigma += eta;
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = ii;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / (work[j] * delta[j]);
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L60: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	temp = z__[*n] / (work[*n] * delta[*n]);
 | |
| 	phi = z__[*n] * temp;
 | |
| 	dphi = temp * temp;
 | |
| 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | |
| 		+ dphi);
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        Main loop to update the values of the array   DELTA */
 | |
| 
 | |
| 	iter = niter + 1;
 | |
| 
 | |
| 	for (niter = iter; niter <= 20; ++niter) {
 | |
| 
 | |
| /*           Test for convergence */
 | |
| 
 | |
| 	    if (abs(w) <= eps * erretm) {
 | |
| 		goto L240;
 | |
| 	    }
 | |
| 
 | |
| /*           Calculate the new step */
 | |
| 
 | |
| 	    dtnsq1 = work[*n - 1] * delta[*n - 1];
 | |
| 	    dtnsq = work[*n] * delta[*n];
 | |
| 	    c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 | |
| 	    a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
 | |
| 	    b = dtnsq1 * dtnsq * w;
 | |
| 	    if (a >= 0.) {
 | |
| 		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    } else {
 | |
| 		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    }
 | |
| 
 | |
| /*           Note, eta should be positive if w is negative, and */
 | |
| /*           eta should be negative otherwise. However, */
 | |
| /*           if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*           we simply use one Newton step instead. This way */
 | |
| /*           will guarantee eta*w < 0. */
 | |
| 
 | |
| 	    if (w * eta > 0.) {
 | |
| 		eta = -w / (dpsi + dphi);
 | |
| 	    }
 | |
| 	    temp = eta - dtnsq;
 | |
| 	    if (temp <= 0.) {
 | |
| 		eta /= 2.;
 | |
| 	    }
 | |
| 
 | |
| 	    tau += eta;
 | |
| 	    eta /= *sigma + sqrt(eta + *sigma * *sigma);
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		delta[j] -= eta;
 | |
| 		work[j] += eta;
 | |
| /* L70: */
 | |
| 	    }
 | |
| 
 | |
| 	    *sigma += eta;
 | |
| 
 | |
| /*           Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	    dpsi = 0.;
 | |
| 	    psi = 0.;
 | |
| 	    erretm = 0.;
 | |
| 	    i__1 = ii;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		temp = z__[j] / (work[j] * delta[j]);
 | |
| 		psi += z__[j] * temp;
 | |
| 		dpsi += temp * temp;
 | |
| 		erretm += psi;
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	    erretm = abs(erretm);
 | |
| 
 | |
| /*           Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	    temp = z__[*n] / (work[*n] * delta[*n]);
 | |
| 	    phi = z__[*n] * temp;
 | |
| 	    dphi = temp * temp;
 | |
| 	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
 | |
| 		    dpsi + dphi);
 | |
| 
 | |
| 	    w = rhoinv + phi + psi;
 | |
| /* L90: */
 | |
| 	}
 | |
| 
 | |
| /*        Return with INFO = 1, NITER = MAXIT and not converged */
 | |
| 
 | |
| 	*info = 1;
 | |
| 	goto L240;
 | |
| 
 | |
| /*        End for the case I = N */
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        The case for I < N */
 | |
| 
 | |
| 	niter = 1;
 | |
| 	ip1 = *i__ + 1;
 | |
| 
 | |
| /*        Calculate initial guess */
 | |
| 
 | |
| 	delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
 | |
| 	delsq2 = delsq / 2.;
 | |
| 	temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    work[j] = d__[j] + d__[*i__] + temp;
 | |
| 	    delta[j] = d__[j] - d__[*i__] - temp;
 | |
| /* L100: */
 | |
| 	}
 | |
| 
 | |
| 	psi = 0.;
 | |
| 	i__1 = *i__ - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    psi += z__[j] * z__[j] / (work[j] * delta[j]);
 | |
| /* L110: */
 | |
| 	}
 | |
| 
 | |
| 	phi = 0.;
 | |
| 	i__1 = *i__ + 2;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    phi += z__[j] * z__[j] / (work[j] * delta[j]);
 | |
| /* L120: */
 | |
| 	}
 | |
| 	c__ = rhoinv + psi + phi;
 | |
| 	w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
 | |
| 		ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
 | |
| 
 | |
| 	if (w > 0.) {
 | |
| 
 | |
| /*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
 | |
| 
 | |
| /*           We choose d(i) as origin. */
 | |
| 
 | |
| 	    orgati = TRUE_;
 | |
| 	    sg2lb = 0.;
 | |
| 	    sg2ub = delsq2;
 | |
| 	    a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 | |
| 	    b = z__[*i__] * z__[*i__] * delsq;
 | |
| 	    if (a > 0.) {
 | |
| 		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    } else {
 | |
| 		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    }
 | |
| 
 | |
| /*           TAU now is an estimation of SIGMA^2 - D( I )^2. The */
 | |
| /*           following, however, is the corresponding estimation of */
 | |
| /*           SIGMA - D( I ). */
 | |
| 
 | |
| 	    eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
 | |
| 	} else {
 | |
| 
 | |
| /*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
 | |
| 
 | |
| /*           We choose d(i+1) as origin. */
 | |
| 
 | |
| 	    orgati = FALSE_;
 | |
| 	    sg2lb = -delsq2;
 | |
| 	    sg2ub = 0.;
 | |
| 	    a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 | |
| 	    b = z__[ip1] * z__[ip1] * delsq;
 | |
| 	    if (a < 0.) {
 | |
| 		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    } else {
 | |
| 		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 
 | |
| 			(c__ * 2.);
 | |
| 	    }
 | |
| 
 | |
| /*           TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The */
 | |
| /*           following, however, is the corresponding estimation of */
 | |
| /*           SIGMA - D( IP1 ). */
 | |
| 
 | |
| 	    eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau, 
 | |
| 		    abs(d__1))));
 | |
| 	}
 | |
| 
 | |
| 	if (orgati) {
 | |
| 	    ii = *i__;
 | |
| 	    *sigma = d__[*i__] + eta;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		work[j] = d__[j] + d__[*i__] + eta;
 | |
| 		delta[j] = d__[j] - d__[*i__] - eta;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    ii = *i__ + 1;
 | |
| 	    *sigma = d__[ip1] + eta;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		work[j] = d__[j] + d__[ip1] + eta;
 | |
| 		delta[j] = d__[j] - d__[ip1] - eta;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	}
 | |
| 	iim1 = ii - 1;
 | |
| 	iip1 = ii + 1;
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = iim1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / (work[j] * delta[j]);
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L150: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	dphi = 0.;
 | |
| 	phi = 0.;
 | |
| 	i__1 = iip1;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    temp = z__[j] / (work[j] * delta[j]);
 | |
| 	    phi += z__[j] * temp;
 | |
| 	    dphi += temp * temp;
 | |
| 	    erretm += phi;
 | |
| /* L160: */
 | |
| 	}
 | |
| 
 | |
| 	w = rhoinv + phi + psi;
 | |
| 
 | |
| /*        W is the value of the secular function with */
 | |
| /*        its ii-th element removed. */
 | |
| 
 | |
| 	swtch3 = FALSE_;
 | |
| 	if (orgati) {
 | |
| 	    if (w < 0.) {
 | |
| 		swtch3 = TRUE_;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if (w > 0.) {
 | |
| 		swtch3 = TRUE_;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (ii == 1 || ii == *n) {
 | |
| 	    swtch3 = FALSE_;
 | |
| 	}
 | |
| 
 | |
| 	temp = z__[ii] / (work[ii] * delta[ii]);
 | |
| 	dw = dpsi + dphi + temp * temp;
 | |
| 	temp = z__[ii] * temp;
 | |
| 	w += temp;
 | |
| 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 | |
| 		abs(tau) * dw;
 | |
| 
 | |
| /*        Test for convergence */
 | |
| 
 | |
| 	if (abs(w) <= eps * erretm) {
 | |
| 	    goto L240;
 | |
| 	}
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    sg2lb = max(sg2lb,tau);
 | |
| 	} else {
 | |
| 	    sg2ub = min(sg2ub,tau);
 | |
| 	}
 | |
| 
 | |
| /*        Calculate the new step */
 | |
| 
 | |
| 	++niter;
 | |
| 	if (! swtch3) {
 | |
| 	    dtipsq = work[ip1] * delta[ip1];
 | |
| 	    dtisq = work[*i__] * delta[*i__];
 | |
| 	    if (orgati) {
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = z__[*i__] / dtisq;
 | |
| 		c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 | |
| 	    } else {
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = z__[ip1] / dtipsq;
 | |
| 		c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 | |
| 	    }
 | |
| 	    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 | |
| 	    b = dtipsq * dtisq * w;
 | |
| 	    if (c__ == 0.) {
 | |
| 		if (a == 0.) {
 | |
| 		    if (orgati) {
 | |
| 			a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + 
 | |
| 				dphi);
 | |
| 		    } else {
 | |
| 			a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 
 | |
| 				dphi);
 | |
| 		    }
 | |
| 		}
 | |
| 		eta = b / a;
 | |
| 	    } else if (a <= 0.) {
 | |
| 		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | |
| 			c__ * 2.);
 | |
| 	    } else {
 | |
| 		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | |
| 			d__1))));
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Interpolation using THREE most relevant poles */
 | |
| 
 | |
| 	    dtiim = work[iim1] * delta[iim1];
 | |
| 	    dtiip = work[iip1] * delta[iip1];
 | |
| 	    temp = rhoinv + psi + phi;
 | |
| 	    if (orgati) {
 | |
| 		temp1 = z__[iim1] / dtiim;
 | |
| 		temp1 *= temp1;
 | |
| 		c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
 | |
| 			 (d__[iim1] + d__[iip1]) * temp1;
 | |
| 		zz[0] = z__[iim1] * z__[iim1];
 | |
| 		if (dpsi < temp1) {
 | |
| 		    zz[2] = dtiip * dtiip * dphi;
 | |
| 		} else {
 | |
| 		    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		temp1 = z__[iip1] / dtiip;
 | |
| 		temp1 *= temp1;
 | |
| 		c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
 | |
| 			 (d__[iim1] + d__[iip1]) * temp1;
 | |
| 		if (dphi < temp1) {
 | |
| 		    zz[0] = dtiim * dtiim * dpsi;
 | |
| 		} else {
 | |
| 		    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 | |
| 		}
 | |
| 		zz[2] = z__[iip1] * z__[iip1];
 | |
| 	    }
 | |
| 	    zz[1] = z__[ii] * z__[ii];
 | |
| 	    dd[0] = dtiim;
 | |
| 	    dd[1] = delta[ii] * work[ii];
 | |
| 	    dd[2] = dtiip;
 | |
| 	    dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L240;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Note, eta should be positive if w is negative, and */
 | |
| /*        eta should be negative otherwise. However, */
 | |
| /*        if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*        we simply use one Newton step instead. This way */
 | |
| /*        will guarantee eta*w < 0. */
 | |
| 
 | |
| 	if (w * eta >= 0.) {
 | |
| 	    eta = -w / dw;
 | |
| 	}
 | |
| 	if (orgati) {
 | |
| 	    temp1 = work[*i__] * delta[*i__];
 | |
| 	    temp = eta - temp1;
 | |
| 	} else {
 | |
| 	    temp1 = work[ip1] * delta[ip1];
 | |
| 	    temp = eta - temp1;
 | |
| 	}
 | |
| 	if (temp > sg2ub || temp < sg2lb) {
 | |
| 	    if (w < 0.) {
 | |
| 		eta = (sg2ub - tau) / 2.;
 | |
| 	    } else {
 | |
| 		eta = (sg2lb - tau) / 2.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	tau += eta;
 | |
| 	eta /= *sigma + sqrt(*sigma * *sigma + eta);
 | |
| 
 | |
| 	prew = w;
 | |
| 
 | |
| 	*sigma += eta;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    work[j] += eta;
 | |
| 	    delta[j] -= eta;
 | |
| /* L170: */
 | |
| 	}
 | |
| 
 | |
| /*        Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	dpsi = 0.;
 | |
| 	psi = 0.;
 | |
| 	erretm = 0.;
 | |
| 	i__1 = iim1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    temp = z__[j] / (work[j] * delta[j]);
 | |
| 	    psi += z__[j] * temp;
 | |
| 	    dpsi += temp * temp;
 | |
| 	    erretm += psi;
 | |
| /* L180: */
 | |
| 	}
 | |
| 	erretm = abs(erretm);
 | |
| 
 | |
| /*        Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	dphi = 0.;
 | |
| 	phi = 0.;
 | |
| 	i__1 = iip1;
 | |
| 	for (j = *n; j >= i__1; --j) {
 | |
| 	    temp = z__[j] / (work[j] * delta[j]);
 | |
| 	    phi += z__[j] * temp;
 | |
| 	    dphi += temp * temp;
 | |
| 	    erretm += phi;
 | |
| /* L190: */
 | |
| 	}
 | |
| 
 | |
| 	temp = z__[ii] / (work[ii] * delta[ii]);
 | |
| 	dw = dpsi + dphi + temp * temp;
 | |
| 	temp = z__[ii] * temp;
 | |
| 	w = rhoinv + phi + psi + temp;
 | |
| 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 | |
| 		abs(tau) * dw;
 | |
| 
 | |
| 	if (w <= 0.) {
 | |
| 	    sg2lb = max(sg2lb,tau);
 | |
| 	} else {
 | |
| 	    sg2ub = min(sg2ub,tau);
 | |
| 	}
 | |
| 
 | |
| 	swtch = FALSE_;
 | |
| 	if (orgati) {
 | |
| 	    if (-w > abs(prew) / 10.) {
 | |
| 		swtch = TRUE_;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if (w > abs(prew) / 10.) {
 | |
| 		swtch = TRUE_;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Main loop to update the values of the array   DELTA and WORK */
 | |
| 
 | |
| 	iter = niter + 1;
 | |
| 
 | |
| 	for (niter = iter; niter <= 20; ++niter) {
 | |
| 
 | |
| /*           Test for convergence */
 | |
| 
 | |
| 	    if (abs(w) <= eps * erretm) {
 | |
| 		goto L240;
 | |
| 	    }
 | |
| 
 | |
| /*           Calculate the new step */
 | |
| 
 | |
| 	    if (! swtch3) {
 | |
| 		dtipsq = work[ip1] * delta[ip1];
 | |
| 		dtisq = work[*i__] * delta[*i__];
 | |
| 		if (! swtch) {
 | |
| 		    if (orgati) {
 | |
| /* Computing 2nd power */
 | |
| 			d__1 = z__[*i__] / dtisq;
 | |
| 			c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 | |
| 		    } else {
 | |
| /* Computing 2nd power */
 | |
| 			d__1 = z__[ip1] / dtipsq;
 | |
| 			c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    temp = z__[ii] / (work[ii] * delta[ii]);
 | |
| 		    if (orgati) {
 | |
| 			dpsi += temp * temp;
 | |
| 		    } else {
 | |
| 			dphi += temp * temp;
 | |
| 		    }
 | |
| 		    c__ = w - dtisq * dpsi - dtipsq * dphi;
 | |
| 		}
 | |
| 		a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 | |
| 		b = dtipsq * dtisq * w;
 | |
| 		if (c__ == 0.) {
 | |
| 		    if (a == 0.) {
 | |
| 			if (! swtch) {
 | |
| 			    if (orgati) {
 | |
| 				a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * 
 | |
| 					(dpsi + dphi);
 | |
| 			    } else {
 | |
| 				a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
 | |
| 					dpsi + dphi);
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
 | |
| 			}
 | |
| 		    }
 | |
| 		    eta = b / a;
 | |
| 		} else if (a <= 0.) {
 | |
| 		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
 | |
| 			     / (c__ * 2.);
 | |
| 		} else {
 | |
| 		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 
 | |
| 			    abs(d__1))));
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Interpolation using THREE most relevant poles */
 | |
| 
 | |
| 		dtiim = work[iim1] * delta[iim1];
 | |
| 		dtiip = work[iip1] * delta[iip1];
 | |
| 		temp = rhoinv + psi + phi;
 | |
| 		if (swtch) {
 | |
| 		    c__ = temp - dtiim * dpsi - dtiip * dphi;
 | |
| 		    zz[0] = dtiim * dtiim * dpsi;
 | |
| 		    zz[2] = dtiip * dtiip * dphi;
 | |
| 		} else {
 | |
| 		    if (orgati) {
 | |
| 			temp1 = z__[iim1] / dtiim;
 | |
| 			temp1 *= temp1;
 | |
| 			temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
 | |
| 				iip1]) * temp1;
 | |
| 			c__ = temp - dtiip * (dpsi + dphi) - temp2;
 | |
| 			zz[0] = z__[iim1] * z__[iim1];
 | |
| 			if (dpsi < temp1) {
 | |
| 			    zz[2] = dtiip * dtiip * dphi;
 | |
| 			} else {
 | |
| 			    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 | |
| 			}
 | |
| 		    } else {
 | |
| 			temp1 = z__[iip1] / dtiip;
 | |
| 			temp1 *= temp1;
 | |
| 			temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
 | |
| 				iip1]) * temp1;
 | |
| 			c__ = temp - dtiim * (dpsi + dphi) - temp2;
 | |
| 			if (dphi < temp1) {
 | |
| 			    zz[0] = dtiim * dtiim * dpsi;
 | |
| 			} else {
 | |
| 			    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 | |
| 			}
 | |
| 			zz[2] = z__[iip1] * z__[iip1];
 | |
| 		    }
 | |
| 		}
 | |
| 		dd[0] = dtiim;
 | |
| 		dd[1] = delta[ii] * work[ii];
 | |
| 		dd[2] = dtiip;
 | |
| 		dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 | |
| 		if (*info != 0) {
 | |
| 		    goto L240;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Note, eta should be positive if w is negative, and */
 | |
| /*           eta should be negative otherwise. However, */
 | |
| /*           if for some reason caused by roundoff, eta*w > 0, */
 | |
| /*           we simply use one Newton step instead. This way */
 | |
| /*           will guarantee eta*w < 0. */
 | |
| 
 | |
| 	    if (w * eta >= 0.) {
 | |
| 		eta = -w / dw;
 | |
| 	    }
 | |
| 	    if (orgati) {
 | |
| 		temp1 = work[*i__] * delta[*i__];
 | |
| 		temp = eta - temp1;
 | |
| 	    } else {
 | |
| 		temp1 = work[ip1] * delta[ip1];
 | |
| 		temp = eta - temp1;
 | |
| 	    }
 | |
| 	    if (temp > sg2ub || temp < sg2lb) {
 | |
| 		if (w < 0.) {
 | |
| 		    eta = (sg2ub - tau) / 2.;
 | |
| 		} else {
 | |
| 		    eta = (sg2lb - tau) / 2.;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    tau += eta;
 | |
| 	    eta /= *sigma + sqrt(*sigma * *sigma + eta);
 | |
| 
 | |
| 	    *sigma += eta;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		work[j] += eta;
 | |
| 		delta[j] -= eta;
 | |
| /* L200: */
 | |
| 	    }
 | |
| 
 | |
| 	    prew = w;
 | |
| 
 | |
| /*           Evaluate PSI and the derivative DPSI */
 | |
| 
 | |
| 	    dpsi = 0.;
 | |
| 	    psi = 0.;
 | |
| 	    erretm = 0.;
 | |
| 	    i__1 = iim1;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		temp = z__[j] / (work[j] * delta[j]);
 | |
| 		psi += z__[j] * temp;
 | |
| 		dpsi += temp * temp;
 | |
| 		erretm += psi;
 | |
| /* L210: */
 | |
| 	    }
 | |
| 	    erretm = abs(erretm);
 | |
| 
 | |
| /*           Evaluate PHI and the derivative DPHI */
 | |
| 
 | |
| 	    dphi = 0.;
 | |
| 	    phi = 0.;
 | |
| 	    i__1 = iip1;
 | |
| 	    for (j = *n; j >= i__1; --j) {
 | |
| 		temp = z__[j] / (work[j] * delta[j]);
 | |
| 		phi += z__[j] * temp;
 | |
| 		dphi += temp * temp;
 | |
| 		erretm += phi;
 | |
| /* L220: */
 | |
| 	    }
 | |
| 
 | |
| 	    temp = z__[ii] / (work[ii] * delta[ii]);
 | |
| 	    dw = dpsi + dphi + temp * temp;
 | |
| 	    temp = z__[ii] * temp;
 | |
| 	    w = rhoinv + phi + psi + temp;
 | |
| 	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 
 | |
| 		    + abs(tau) * dw;
 | |
| 	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
 | |
| 		swtch = ! swtch;
 | |
| 	    }
 | |
| 
 | |
| 	    if (w <= 0.) {
 | |
| 		sg2lb = max(sg2lb,tau);
 | |
| 	    } else {
 | |
| 		sg2ub = min(sg2ub,tau);
 | |
| 	    }
 | |
| 
 | |
| /* L230: */
 | |
| 	}
 | |
| 
 | |
| /*        Return with INFO = 1, NITER = MAXIT and not converged */
 | |
| 
 | |
| 	*info = 1;
 | |
| 
 | |
|     }
 | |
| 
 | |
| L240:
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DLASD4 */
 | |
| 
 | |
| } /* dlasd4_ */
 | 
