164 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "clapack.h"
 | |
| 
 | |
| /* Subroutine */ int dlarrr_(integer *n, doublereal *d__, doublereal *e, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     doublereal d__1;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__;
 | |
|     doublereal eps, tmp, tmp2, rmin;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal offdig, safmin;
 | |
|     logical yesrel;
 | |
|     doublereal smlnum, offdig2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.1) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  Perform tests to decide whether the symmetric tridiagonal matrix T */
 | |
| /*  warrants expensive computations which guarantee high relative accuracy */
 | |
| /*  in the eigenvalues. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix. N > 0. */
 | |
| 
 | |
| /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The N diagonal elements of the tridiagonal matrix T. */
 | |
| 
 | |
| /*  E       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the first (N-1) entries contain the subdiagonal */
 | |
| /*          elements of the tridiagonal matrix T; E(N) is set to ZERO. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          INFO = 0(default) : the matrix warrants computations preserving */
 | |
| /*                              relative accuracy. */
 | |
| /*          INFO = 1          : the matrix warrants computations guaranteeing */
 | |
| /*                              only absolute accuracy. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Beresford Parlett, University of California, Berkeley, USA */
 | |
| /*     Jim Demmel, University of California, Berkeley, USA */
 | |
| /*     Inderjit Dhillon, University of Texas, Austin, USA */
 | |
| /*     Osni Marques, LBNL/NERSC, USA */
 | |
| /*     Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     As a default, do NOT go for relative-accuracy preserving computations. */
 | |
|     /* Parameter adjustments */
 | |
|     --e;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 1;
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     eps = dlamch_("Precision");
 | |
|     smlnum = safmin / eps;
 | |
|     rmin = sqrt(smlnum);
 | |
| /*     Tests for relative accuracy */
 | |
| 
 | |
| /*     Test for scaled diagonal dominance */
 | |
| /*     Scale the diagonal entries to one and check whether the sum of the */
 | |
| /*     off-diagonals is less than one */
 | |
| 
 | |
| /*     The sdd relative error bounds have a 1/(1- 2*x) factor in them, */
 | |
| /*     x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative */
 | |
| /*     accuracy is promised.  In the notation of the code fragment below, */
 | |
| /*     1/(1 - (OFFDIG + OFFDIG2)) is the condition number. */
 | |
| /*     We don't think it is worth going into "sdd mode" unless the relative */
 | |
| /*     condition number is reasonable, not 1/macheps. */
 | |
| /*     The threshold should be compatible with other thresholds used in the */
 | |
| /*     code. We set  OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds */
 | |
| /*     to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 */
 | |
| /*     instead of the current OFFDIG + OFFDIG2 < 1 */
 | |
| 
 | |
|     yesrel = TRUE_;
 | |
|     offdig = 0.;
 | |
|     tmp = sqrt((abs(d__[1])));
 | |
|     if (tmp < rmin) {
 | |
| 	yesrel = FALSE_;
 | |
|     }
 | |
|     if (! yesrel) {
 | |
| 	goto L11;
 | |
|     }
 | |
|     i__1 = *n;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	tmp2 = sqrt((d__1 = d__[i__], abs(d__1)));
 | |
| 	if (tmp2 < rmin) {
 | |
| 	    yesrel = FALSE_;
 | |
| 	}
 | |
| 	if (! yesrel) {
 | |
| 	    goto L11;
 | |
| 	}
 | |
| 	offdig2 = (d__1 = e[i__ - 1], abs(d__1)) / (tmp * tmp2);
 | |
| 	if (offdig + offdig2 >= .999) {
 | |
| 	    yesrel = FALSE_;
 | |
| 	}
 | |
| 	if (! yesrel) {
 | |
| 	    goto L11;
 | |
| 	}
 | |
| 	tmp = tmp2;
 | |
| 	offdig = offdig2;
 | |
| /* L10: */
 | |
|     }
 | |
| L11:
 | |
|     if (yesrel) {
 | |
| 	*info = 0;
 | |
| 	return 0;
 | |
|     } else {
 | |
|     }
 | |
| 
 | |
| 
 | |
| /*     *** MORE TO BE IMPLEMENTED *** */
 | |
| 
 | |
| 
 | |
| /*     Test if the lower bidiagonal matrix L from T = L D L^T */
 | |
| /*     (zero shift facto) is well conditioned */
 | |
| 
 | |
| 
 | |
| /*     Test if the upper bidiagonal matrix U from T = U D U^T */
 | |
| /*     (zero shift facto) is well conditioned. */
 | |
| /*     In this case, the matrix needs to be flipped and, at the end */
 | |
| /*     of the eigenvector computation, the flip needs to be applied */
 | |
| /*     to the computed eigenvectors (and the support) */
 | |
| 
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     END OF DLARRR */
 | |
| 
 | |
| } /* dlarrr_ */
 | 
