281 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dorglq.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__3 = 3;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal *
 | |
| 	a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
 | |
|     extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 
 | |
| 	    dlarfb_(char *, char *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *);
 | |
|     integer ldwork, lwkopt;
 | |
|     logical lquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DORGLQ generates an M-by-N real matrix Q with orthonormal rows, */
 | |
| /*  which is defined as the first M rows of a product of K elementary */
 | |
| /*  reflectors of order N */
 | |
| 
 | |
| /*        Q  =  H(k) . . . H(2) H(1) */
 | |
| 
 | |
| /*  as returned by DGELQF. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  M       (input) INTEGER */
 | |
| /*          The number of rows of the matrix Q. M >= 0. */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The number of columns of the matrix Q. N >= M. */
 | |
| 
 | |
| /*  K       (input) INTEGER */
 | |
| /*          The number of elementary reflectors whose product defines the */
 | |
| /*          matrix Q. M >= K >= 0. */
 | |
| 
 | |
| /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /*          On entry, the i-th row must contain the vector which defines */
 | |
| /*          the elementary reflector H(i), for i = 1,2,...,k, as returned */
 | |
| /*          by DGELQF in the first k rows of its array argument A. */
 | |
| /*          On exit, the M-by-N matrix Q. */
 | |
| 
 | |
| /*  LDA     (input) INTEGER */
 | |
| /*          The first dimension of the array A. LDA >= max(1,M). */
 | |
| 
 | |
| /*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
 | |
| /*          TAU(i) must contain the scalar factor of the elementary */
 | |
| /*          reflector H(i), as returned by DGELQF. */
 | |
| 
 | |
| /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | |
| /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| 
 | |
| /*  LWORK   (input) INTEGER */
 | |
| /*          The dimension of the array WORK. LWORK >= max(1,M). */
 | |
| /*          For optimum performance LWORK >= M*NB, where NB is */
 | |
| /*          the optimal blocksize. */
 | |
| 
 | |
| /*          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /*          only calculates the optimal size of the WORK array, returns */
 | |
| /*          this value as the first entry of the WORK array, and no error */
 | |
| /*          message related to LWORK is issued by XERBLA. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0:  successful exit */
 | |
| /*          < 0:  if INFO = -i, the i-th argument has an illegal value */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1;
 | |
|     a -= a_offset;
 | |
|     --tau;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1);
 | |
|     lwkopt = max(1,*m) * nb;
 | |
|     work[1] = (doublereal) lwkopt;
 | |
|     lquery = *lwork == -1;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < *m) {
 | |
| 	*info = -2;
 | |
|     } else if (*k < 0 || *k > *m) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < max(1,*m)) {
 | |
| 	*info = -5;
 | |
|     } else if (*lwork < max(1,*m) && ! lquery) {
 | |
| 	*info = -8;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DORGLQ", &i__1);
 | |
| 	return 0;
 | |
|     } else if (lquery) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m <= 0) {
 | |
| 	work[1] = 1.;
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     nbmin = 2;
 | |
|     nx = 0;
 | |
|     iws = *m;
 | |
|     if (nb > 1 && nb < *k) {
 | |
| 
 | |
| /*        Determine when to cross over from blocked to unblocked code. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1);
 | |
| 	nx = max(i__1,i__2);
 | |
| 	if (nx < *k) {
 | |
| 
 | |
| /*           Determine if workspace is large enough for blocked code. */
 | |
| 
 | |
| 	    ldwork = *m;
 | |
| 	    iws = ldwork * nb;
 | |
| 	    if (*lwork < iws) {
 | |
| 
 | |
| /*              Not enough workspace to use optimal NB:  reduce NB and */
 | |
| /*              determine the minimum value of NB. */
 | |
| 
 | |
| 		nb = *lwork / ldwork;
 | |
| /* Computing MAX */
 | |
| 		i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1);
 | |
| 		nbmin = max(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (nb >= nbmin && nb < *k && nx < *k) {
 | |
| 
 | |
| /*        Use blocked code after the last block. */
 | |
| /*        The first kk rows are handled by the block method. */
 | |
| 
 | |
| 	ki = (*k - nx - 1) / nb * nb;
 | |
| /* Computing MIN */
 | |
| 	i__1 = *k, i__2 = ki + nb;
 | |
| 	kk = min(i__1,i__2);
 | |
| 
 | |
| /*        Set A(kk+1:m,1:kk) to zero. */
 | |
| 
 | |
| 	i__1 = kk;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (i__ = kk + 1; i__ <= i__2; ++i__) {
 | |
| 		a[i__ + j * a_dim1] = 0.;
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
|     } else {
 | |
| 	kk = 0;
 | |
|     }
 | |
| 
 | |
| /*     Use unblocked code for the last or only block. */
 | |
| 
 | |
|     if (kk < *m) {
 | |
| 	i__1 = *m - kk;
 | |
| 	i__2 = *n - kk;
 | |
| 	i__3 = *k - kk;
 | |
| 	dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
 | |
| 		tau[kk + 1], &work[1], &iinfo);
 | |
|     }
 | |
| 
 | |
|     if (kk > 0) {
 | |
| 
 | |
| /*        Use blocked code */
 | |
| 
 | |
| 	i__1 = -nb;
 | |
| 	for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
 | |
| /* Computing MIN */
 | |
| 	    i__2 = nb, i__3 = *k - i__ + 1;
 | |
| 	    ib = min(i__2,i__3);
 | |
| 	    if (i__ + ib <= *m) {
 | |
| 
 | |
| /*              Form the triangular factor of the block reflector */
 | |
| /*              H = H(i) H(i+1) . . . H(i+ib-1) */
 | |
| 
 | |
| 		i__2 = *n - i__ + 1;
 | |
| 		dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ * 
 | |
| 			a_dim1], lda, &tau[i__], &work[1], &ldwork);
 | |
| 
 | |
| /*              Apply H' to A(i+ib:m,i:n) from the right */
 | |
| 
 | |
| 		i__2 = *m - i__ - ib + 1;
 | |
| 		i__3 = *n - i__ + 1;
 | |
| 		dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, &
 | |
| 			i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
 | |
| 			ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 
 | |
| 			1], &ldwork);
 | |
| 	    }
 | |
| 
 | |
| /*           Apply H' to columns i:n of current block */
 | |
| 
 | |
| 	    i__2 = *n - i__ + 1;
 | |
| 	    dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
 | |
| 		    work[1], &iinfo);
 | |
| 
 | |
| /*           Set columns 1:i-1 of current block to zero */
 | |
| 
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		i__3 = i__ + ib - 1;
 | |
| 		for (l = i__; l <= i__3; ++l) {
 | |
| 		    a[l + j * a_dim1] = 0.;
 | |
| /* L30: */
 | |
| 		}
 | |
| /* L40: */
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     work[1] = (doublereal) iws;
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DORGLQ */
 | |
| 
 | |
| } /* dorglq_ */
 | 
