432 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <string>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| #include <iostream>
 | |
| #include <sstream>
 | |
| #include <iomanip>
 | |
| 
 | |
| #include "test_chessboardgenerator.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| //template<class T> ostream& operator<<(ostream& out, const Mat_<T>& mat)
 | |
| //{
 | |
| //    for(Mat_<T>::const_iterator pos = mat.begin(), end = mat.end(); pos != end; ++pos)
 | |
| //        out << *pos << " ";
 | |
| //    return out;
 | |
| //}
 | |
| //ostream& operator<<(ostream& out, const Mat& mat) { return out << Mat_<double>(mat); }
 | |
| 
 | |
| Mat calcRvec(const vector<Point3f>& points, const Size& cornerSize)
 | |
| {
 | |
|     Point3f p00 = points[0];
 | |
|     Point3f p10 = points[1];
 | |
|     Point3f p01 = points[cornerSize.width];
 | |
| 
 | |
|     Vec3d ex(p10.x - p00.x, p10.y - p00.y, p10.z - p00.z);
 | |
|     Vec3d ey(p01.x - p00.x, p01.y - p00.y, p01.z - p00.z);
 | |
|     Vec3d ez = ex.cross(ey);
 | |
| 
 | |
|     Mat rot(3, 3, CV_64F);
 | |
|     *rot.ptr<Vec3d>(0) = ex;
 | |
|     *rot.ptr<Vec3d>(1) = ey;
 | |
|     *rot.ptr<Vec3d>(2) = ez * (1.0/norm(ez));
 | |
| 
 | |
|     Mat res;
 | |
|     Rodrigues(rot.t(), res);
 | |
|     return res.reshape(1, 1);
 | |
| }
 | |
| 
 | |
| class CV_CalibrateCameraArtificialTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_CalibrateCameraArtificialTest() :
 | |
|         r(0)
 | |
|     {
 | |
|     }
 | |
|     ~CV_CalibrateCameraArtificialTest() {}
 | |
| protected:
 | |
|     int r;
 | |
| 
 | |
|     const static int JUST_FIND_CORNERS = 0;
 | |
|     const static int USE_CORNERS_SUBPIX = 1;
 | |
|     const static int USE_4QUAD_CORNERS = 2;
 | |
|     const static int ARTIFICIAL_CORNERS = 4;
 | |
| 
 | |
| 
 | |
|     bool checkErr(double a, double a0, double eps, double delta)
 | |
|     {
 | |
|         return fabs(a - a0) > eps * (fabs(a0) + delta);
 | |
|     }
 | |
| 
 | |
|     void compareCameraMatrs(const Mat_<double>& camMat, const Mat& camMat_est)
 | |
|     {
 | |
|         if ( camMat_est.at<double>(0, 1) != 0 || camMat_est.at<double>(1, 0) != 0 ||
 | |
|             camMat_est.at<double>(2, 0) != 0 || camMat_est.at<double>(2, 1) != 0 ||
 | |
|             camMat_est.at<double>(2, 2) != 1)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Bad shape of camera matrix returned \n");
 | |
|             ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
 | |
|         }
 | |
| 
 | |
|         double fx_e = camMat_est.at<double>(0, 0), fy_e = camMat_est.at<double>(1, 1);
 | |
|         double cx_e = camMat_est.at<double>(0, 2), cy_e = camMat_est.at<double>(1, 2);
 | |
| 
 | |
|         double fx = camMat(0, 0), fy = camMat(1, 1), cx = camMat(0, 2), cy = camMat(1, 2);
 | |
| 
 | |
|         const double eps = 1e-2;
 | |
|         const double dlt = 1e-5;
 | |
| 
 | |
|         bool fail = checkErr(fx_e, fx, eps, dlt) || checkErr(fy_e, fy, eps, dlt) ||
 | |
|             checkErr(cx_e, cx, eps, dlt) || checkErr(cy_e, cy, eps, dlt);
 | |
| 
 | |
|         if (fail)
 | |
|         {
 | |
|             ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|         }
 | |
|         ts->printf( cvtest::TS::LOG, "%d) Expected  [Fx Fy Cx Cy] = [%.3f %.3f %.3f %.3f]\n", r, fx, fy, cx, cy);
 | |
|         ts->printf( cvtest::TS::LOG, "%d) Estimated [Fx Fy Cx Cy] = [%.3f %.3f %.3f %.3f]\n", r, fx_e, fy_e, cx_e, cy_e);
 | |
|     }
 | |
| 
 | |
|     void compareDistCoeffs(const Mat_<double>& distCoeffs, const Mat& distCoeffs_est)
 | |
|     {
 | |
|         const double *dt_e = distCoeffs_est.ptr<double>();
 | |
| 
 | |
|         double k1_e = dt_e[0], k2_e = dt_e[1], k3_e = dt_e[4];
 | |
|         double p1_e = dt_e[2], p2_e = dt_e[3];
 | |
| 
 | |
|         double k1 = distCoeffs(0, 0), k2 = distCoeffs(0, 1), k3 = distCoeffs(0, 4);
 | |
|         double p1 = distCoeffs(0, 2), p2 = distCoeffs(0, 3);
 | |
| 
 | |
|         const double eps = 5e-2;
 | |
|         const double dlt = 1e-3;
 | |
| 
 | |
|         const double eps_k3 = 5;
 | |
|         const double dlt_k3 = 1e-3;
 | |
| 
 | |
|         bool fail = checkErr(k1_e, k1, eps, dlt) || checkErr(k2_e, k2, eps, dlt) || checkErr(k3_e, k3, eps_k3, dlt_k3) ||
 | |
|             checkErr(p1_e, p1, eps, dlt) || checkErr(p2_e, p2, eps, dlt);
 | |
| 
 | |
|         if (fail)
 | |
|         {
 | |
|             // commented according to vp123's recomendation. TODO - improve accuaracy
 | |
|             //ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); ss
 | |
|         }
 | |
|         ts->printf( cvtest::TS::LOG, "%d) DistCoeff exp=(%.2f, %.2f, %.4f, %.4f %.2f)\n", r, k1, k2, p1, p2, k3);
 | |
|         ts->printf( cvtest::TS::LOG, "%d) DistCoeff est=(%.2f, %.2f, %.4f, %.4f %.2f)\n", r, k1_e, k2_e, p1_e, p2_e, k3_e);
 | |
|         ts->printf( cvtest::TS::LOG, "%d) AbsError = [%.5f %.5f %.5f %.5f %.5f]\n", r, fabs(k1-k1_e), fabs(k2-k2_e), fabs(p1-p1_e), fabs(p2-p2_e), fabs(k3-k3_e));
 | |
|     }
 | |
| 
 | |
|     void compareShiftVecs(const vector<Mat>& tvecs, const vector<Mat>& tvecs_est)
 | |
|     {
 | |
|         const double eps = 1e-2;
 | |
|         const double dlt = 1e-4;
 | |
| 
 | |
|         int err_count = 0;
 | |
|         const int errMsgNum = 4;
 | |
|         for(size_t i = 0; i < tvecs.size(); ++i)
 | |
|         {
 | |
|             const Point3d& tvec = *tvecs[i].ptr<Point3d>();
 | |
|             const Point3d& tvec_est = *tvecs_est[i].ptr<Point3d>();
 | |
| 
 | |
|             if (norm(tvec_est - tvec) > eps* (norm(tvec) + dlt))
 | |
|             {
 | |
|                 if (err_count++ < errMsgNum)
 | |
|                 {
 | |
|                     if (err_count == errMsgNum)
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) ...\n", r);
 | |
|                     else
 | |
|                     {
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) Bad accuracy in returned tvecs. Index = %d\n", r, i);
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) norm(tvec_est - tvec) = %f, norm(tvec_exp) = %f \n", r, norm(tvec_est - tvec), norm(tvec));
 | |
|                     }
 | |
|                 }
 | |
|                 ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void compareRotationVecs(const vector<Mat>& rvecs, const vector<Mat>& rvecs_est)
 | |
|     {
 | |
|         const double eps = 2e-2;
 | |
|         const double dlt = 1e-4;
 | |
| 
 | |
|         Mat rmat, rmat_est;
 | |
|         int err_count = 0;
 | |
|         const int errMsgNum = 4;
 | |
|         for(size_t i = 0; i < rvecs.size(); ++i)
 | |
|         {
 | |
|             Rodrigues(rvecs[i], rmat);
 | |
|             Rodrigues(rvecs_est[i], rmat_est);
 | |
| 
 | |
|             if (cvtest::norm(rmat_est, rmat, NORM_L2) > eps* (cvtest::norm(rmat, NORM_L2) + dlt))
 | |
|             {
 | |
|                 if (err_count++ < errMsgNum)
 | |
|                 {
 | |
|                     if (err_count == errMsgNum)
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) ...\n", r);
 | |
|                     else
 | |
|                     {
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) Bad accuracy in returned rvecs (rotation matrs). Index = %d\n", r, i);
 | |
|                         ts->printf( cvtest::TS::LOG, "%d) norm(rot_mat_est - rot_mat_exp) = %f, norm(rot_mat_exp) = %f \n", r,
 | |
|                                    cvtest::norm(rmat_est, rmat, NORM_L2), cvtest::norm(rmat, NORM_L2));
 | |
| 
 | |
|                     }
 | |
|                 }
 | |
|                 ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double reprojectErrorWithoutIntrinsics(const vector<Point3f>& cb3d, const vector<Mat>& _rvecs_exp, const vector<Mat>& _tvecs_exp,
 | |
|         const vector<Mat>& rvecs_est, const vector<Mat>& tvecs_est)
 | |
|     {
 | |
|         const static Mat eye33 = Mat::eye(3, 3, CV_64F);
 | |
|         const static Mat zero15 = Mat::zeros(1, 5, CV_64F);
 | |
|         Mat _chessboard3D(cb3d);
 | |
|         vector<Point2f> uv_exp, uv_est;
 | |
|         double res = 0;
 | |
| 
 | |
|         for(size_t i = 0; i < rvecs_exp.size(); ++i)
 | |
|         {
 | |
|             projectPoints(_chessboard3D, _rvecs_exp[i], _tvecs_exp[i], eye33, zero15, uv_exp);
 | |
|             projectPoints(_chessboard3D, rvecs_est[i], tvecs_est[i], eye33, zero15, uv_est);
 | |
|             for(size_t j = 0; j < cb3d.size(); ++j)
 | |
|                 res += norm(uv_exp[i] - uv_est[i]);
 | |
|         }
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     Size2f sqSile;
 | |
| 
 | |
|     vector<Point3f> chessboard3D;
 | |
|     vector<Mat> boards, rvecs_exp, tvecs_exp, rvecs_spnp, tvecs_spnp;
 | |
|     vector< vector<Point3f> > objectPoints;
 | |
|     vector< vector<Point2f> > imagePoints_art;
 | |
|     vector< vector<Point2f> > imagePoints_findCb;
 | |
| 
 | |
| 
 | |
|     void prepareForTest(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, size_t brdsNum, const ChessBoardGenerator& cbg)
 | |
|     {
 | |
|         sqSile = Size2f(1.f, 1.f);
 | |
|         Size cornersSize = cbg.cornersSize();
 | |
| 
 | |
|         chessboard3D.clear();
 | |
|         for(int j = 0; j < cornersSize.height; ++j)
 | |
|             for(int i = 0; i < cornersSize.width; ++i)
 | |
|                 chessboard3D.push_back(Point3f(sqSile.width * i, sqSile.height * j, 0));
 | |
| 
 | |
|         boards.resize(brdsNum);
 | |
|         rvecs_exp.resize(brdsNum);
 | |
|         tvecs_exp.resize(brdsNum);
 | |
|         objectPoints.clear();
 | |
|         objectPoints.resize(brdsNum, chessboard3D);
 | |
|         imagePoints_art.clear();
 | |
|         imagePoints_findCb.clear();
 | |
| 
 | |
|         vector<Point2f> corners_art, corners_fcb;
 | |
|         for(size_t i = 0; i < brdsNum; ++i)
 | |
|         {
 | |
|             for(;;)
 | |
|             {
 | |
|                 boards[i] = cbg(bg, camMat, distCoeffs, sqSile, corners_art);
 | |
|                 if(findChessboardCorners(boards[i], cornersSize, corners_fcb))
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             //cv::namedWindow("CB"); imshow("CB", boards[i]); cv::waitKey();
 | |
| 
 | |
|             imagePoints_art.push_back(corners_art);
 | |
|             imagePoints_findCb.push_back(corners_fcb);
 | |
| 
 | |
|             tvecs_exp[i].create(1, 3, CV_64F);
 | |
|             *tvecs_exp[i].ptr<Point3d>() = cbg.corners3d[0];
 | |
|             rvecs_exp[i] = calcRvec(cbg.corners3d, cbg.cornersSize());
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     void runTest(const Size& imgSize, const Mat_<double>& camMat, const Mat_<double>& distCoeffs, size_t brdsNum, const Size& cornersSize, int flag = 0)
 | |
|     {
 | |
|         const TermCriteria tc(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1);
 | |
| 
 | |
|         vector< vector<Point2f> > imagePoints;
 | |
| 
 | |
|         switch(flag)
 | |
|         {
 | |
|         case JUST_FIND_CORNERS: imagePoints = imagePoints_findCb; break;
 | |
|         case ARTIFICIAL_CORNERS: imagePoints = imagePoints_art; break;
 | |
| 
 | |
|         case USE_CORNERS_SUBPIX:
 | |
|             for(size_t i = 0; i < brdsNum; ++i)
 | |
|             {
 | |
|                 Mat gray;
 | |
|                 cvtColor(boards[i], gray, COLOR_BGR2GRAY);
 | |
|                 vector<Point2f> tmp = imagePoints_findCb[i];
 | |
|                 cornerSubPix(gray, tmp, Size(5, 5), Size(-1,-1), tc);
 | |
|                 imagePoints.push_back(tmp);
 | |
|             }
 | |
|             break;
 | |
|         case USE_4QUAD_CORNERS:
 | |
|             for(size_t i = 0; i < brdsNum; ++i)
 | |
|             {
 | |
|                 Mat gray;
 | |
|                 cvtColor(boards[i], gray, COLOR_BGR2GRAY);
 | |
|                 vector<Point2f> tmp = imagePoints_findCb[i];
 | |
|                 find4QuadCornerSubpix(gray, tmp, Size(5, 5));
 | |
|                 imagePoints.push_back(tmp);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             throw std::exception();
 | |
|         }
 | |
| 
 | |
|         Mat camMat_est = Mat::eye(3, 3, CV_64F), distCoeffs_est = Mat::zeros(1, 5, CV_64F);
 | |
|         vector<Mat> rvecs_est, tvecs_est;
 | |
| 
 | |
|         int flags = /*CALIB_FIX_K3|*/CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6; //CALIB_FIX_K3; //CALIB_FIX_ASPECT_RATIO |  | CALIB_ZERO_TANGENT_DIST;
 | |
|         TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, DBL_EPSILON);
 | |
|         double rep_error = calibrateCamera(objectPoints, imagePoints, imgSize, camMat_est, distCoeffs_est, rvecs_est, tvecs_est, flags, criteria);
 | |
|         rep_error /= brdsNum * cornersSize.area();
 | |
| 
 | |
|         const double thres = 1;
 | |
|         if (rep_error > thres)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "%d) Too big reproject error = %f\n", r, rep_error);
 | |
|             ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|         }
 | |
| 
 | |
|         compareCameraMatrs(camMat, camMat_est);
 | |
|         compareDistCoeffs(distCoeffs, distCoeffs_est);
 | |
|         compareShiftVecs(tvecs_exp, tvecs_est);
 | |
|         compareRotationVecs(rvecs_exp, rvecs_est);
 | |
| 
 | |
|         double rep_errorWOI = reprojectErrorWithoutIntrinsics(chessboard3D, rvecs_exp, tvecs_exp, rvecs_est, tvecs_est);
 | |
|         rep_errorWOI /= brdsNum * cornersSize.area();
 | |
| 
 | |
|         const double thres2 = 0.01;
 | |
|         if (rep_errorWOI > thres2)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "%d) Too big reproject error without intrinsics = %f\n", r, rep_errorWOI);
 | |
|             ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|         }
 | |
| 
 | |
|         ts->printf( cvtest::TS::LOG, "%d) Testing solvePnP...\n", r);
 | |
|         rvecs_spnp.resize(brdsNum);
 | |
|         tvecs_spnp.resize(brdsNum);
 | |
|         for(size_t i = 0; i < brdsNum; ++i)
 | |
|             solvePnP(Mat(objectPoints[i]), Mat(imagePoints[i]), camMat, distCoeffs, rvecs_spnp[i], tvecs_spnp[i]);
 | |
| 
 | |
|         compareShiftVecs(tvecs_exp, tvecs_spnp);
 | |
|         compareRotationVecs(rvecs_exp, rvecs_spnp);
 | |
|     }
 | |
| 
 | |
|     void run(int)
 | |
|     {
 | |
| 
 | |
|         ts->set_failed_test_info(cvtest::TS::OK);
 | |
|         RNG& rng = theRNG();
 | |
| 
 | |
|         int progress = 0;
 | |
|         int repeat_num = 3;
 | |
|         for(r = 0; r < repeat_num; ++r)
 | |
|         {
 | |
|             const int brds_num = 20;
 | |
| 
 | |
|             Mat bg(Size(640, 480), CV_8UC3);
 | |
|             randu(bg, Scalar::all(32), Scalar::all(255));
 | |
|             GaussianBlur(bg, bg, Size(5, 5), 2);
 | |
| 
 | |
|             double fx = 300 + (20 * (double)rng - 10);
 | |
|             double fy = 300 + (20 * (double)rng - 10);
 | |
| 
 | |
|             double cx = bg.cols/2 + (40 * (double)rng - 20);
 | |
|             double cy = bg.rows/2 + (40 * (double)rng - 20);
 | |
| 
 | |
|             Mat_<double> camMat(3, 3);
 | |
|             camMat << fx, 0., cx, 0, fy, cy, 0., 0., 1.;
 | |
| 
 | |
|             double k1 = 0.5 + (double)rng/5;
 | |
|             double k2 = (double)rng/5;
 | |
|             double k3 = (double)rng/5;
 | |
| 
 | |
|             double p1 = 0.001 + (double)rng/10;
 | |
|             double p2 = 0.001 + (double)rng/10;
 | |
| 
 | |
|             Mat_<double> distCoeffs(1, 5, 0.0);
 | |
|             distCoeffs << k1, k2, p1, p2, k3;
 | |
| 
 | |
|             ChessBoardGenerator cbg(Size(9, 8));
 | |
|             cbg.min_cos = 0.9;
 | |
|             cbg.cov = 0.8;
 | |
| 
 | |
|             progress = update_progress(progress, r, repeat_num, 0);
 | |
|             ts->printf( cvtest::TS::LOG, "\n");
 | |
|             prepareForTest(bg, camMat, distCoeffs, brds_num, cbg);
 | |
| 
 | |
|             ts->printf( cvtest::TS::LOG, "artificial corners\n");
 | |
|             runTest(bg.size(), camMat, distCoeffs, brds_num, cbg.cornersSize(), ARTIFICIAL_CORNERS);
 | |
|             progress = update_progress(progress, r, repeat_num, 0);
 | |
| 
 | |
|             ts->printf( cvtest::TS::LOG, "findChessboard corners\n");
 | |
|             runTest(bg.size(), camMat, distCoeffs, brds_num, cbg.cornersSize(), JUST_FIND_CORNERS);
 | |
|             progress = update_progress(progress, r, repeat_num, 0);
 | |
| 
 | |
|             ts->printf( cvtest::TS::LOG, "cornersSubPix corners\n");
 | |
|             runTest(bg.size(), camMat, distCoeffs, brds_num, cbg.cornersSize(), USE_CORNERS_SUBPIX);
 | |
|             progress = update_progress(progress, r, repeat_num, 0);
 | |
| 
 | |
|             ts->printf( cvtest::TS::LOG, "4quad corners\n");
 | |
|             runTest(bg.size(), camMat, distCoeffs, brds_num, cbg.cornersSize(), USE_4QUAD_CORNERS);
 | |
|             progress = update_progress(progress, r, repeat_num, 0);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST(Calib3d_CalibrateCamera_CPP, DISABLED_accuracy_on_artificial_data) { CV_CalibrateCameraArtificialTest test; test.safe_run(); }
 | 
