193 lines
5.6 KiB
Python
Executable File
193 lines
5.6 KiB
Python
Executable File
'''
|
|
Video capture sample.
|
|
|
|
Sample shows how VideoCapture class can be used to acquire video
|
|
frames from a camera of a movie file. Also the sample provides
|
|
an example of procedural video generation by an object, mimicking
|
|
the VideoCapture interface (see Chess class).
|
|
|
|
'create_capture' is a convinience function for capture creation,
|
|
falling back to procedural video in case of error.
|
|
|
|
Usage:
|
|
video.py [--shotdir <shot path>] [source0] [source1] ...'
|
|
|
|
sourceN is an
|
|
- integer number for camera capture
|
|
- name of video file
|
|
- synth:<params> for procedural video
|
|
|
|
Synth examples:
|
|
synth:bg=../cpp/lena.jpg:noise=0.1
|
|
synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480
|
|
|
|
Keys:
|
|
ESC - exit
|
|
SPACE - save current frame to <shot path> directory
|
|
|
|
'''
|
|
|
|
import numpy as np
|
|
import cv2
|
|
from time import clock
|
|
from numpy import pi, sin, cos
|
|
import common
|
|
|
|
class VideoSynthBase(object):
|
|
def __init__(self, size=None, noise=0.0, bg = None, **params):
|
|
self.bg = None
|
|
self.frame_size = (640, 480)
|
|
if bg is not None:
|
|
self.bg = cv2.imread(bg, 1)
|
|
h, w = self.bg.shape[:2]
|
|
self.frame_size = (w, h)
|
|
|
|
if size is not None:
|
|
w, h = map(int, size.split('x'))
|
|
self.frame_size = (w, h)
|
|
self.bg = cv2.resize(self.bg, self.frame_size)
|
|
|
|
self.noise = float(noise)
|
|
|
|
def render(self, dst):
|
|
pass
|
|
|
|
def read(self, dst=None):
|
|
w, h = self.frame_size
|
|
|
|
if self.bg is None:
|
|
buf = np.zeros((h, w, 3), np.uint8)
|
|
else:
|
|
buf = self.bg.copy()
|
|
|
|
self.render(buf)
|
|
|
|
if self.noise > 0.0:
|
|
noise = np.zeros((h, w, 3), np.int8)
|
|
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
|
|
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
|
|
return True, buf
|
|
|
|
def isOpened(self):
|
|
return True
|
|
|
|
class Chess(VideoSynthBase):
|
|
def __init__(self, **kw):
|
|
super(Chess, self).__init__(**kw)
|
|
|
|
w, h = self.frame_size
|
|
|
|
self.grid_size = sx, sy = 10, 7
|
|
white_quads = []
|
|
black_quads = []
|
|
for i, j in np.ndindex(sy, sx):
|
|
q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]]
|
|
[white_quads, black_quads][(i + j) % 2].append(q)
|
|
self.white_quads = np.float32(white_quads)
|
|
self.black_quads = np.float32(black_quads)
|
|
|
|
fx = 0.9
|
|
self.K = np.float64([[fx*w, 0, 0.5*(w-1)],
|
|
[0, fx*w, 0.5*(h-1)],
|
|
[0.0,0.0, 1.0]])
|
|
|
|
self.dist_coef = np.float64([-0.2, 0.1, 0, 0])
|
|
self.t = 0
|
|
|
|
def draw_quads(self, img, quads, color = (0, 255, 0)):
|
|
img_quads = cv2.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0]
|
|
img_quads.shape = quads.shape[:2] + (2,)
|
|
for q in img_quads:
|
|
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.CV_AA, shift=2)
|
|
|
|
def render(self, dst):
|
|
t = self.t
|
|
self.t += 1.0/30.0
|
|
|
|
sx, sy = self.grid_size
|
|
center = np.array([0.5*sx, 0.5*sy, 0.0])
|
|
phi = pi/3 + sin(t*3)*pi/8
|
|
c, s = cos(phi), sin(phi)
|
|
ofs = np.array([sin(1.2*t), cos(1.8*t), 0]) * sx * 0.2
|
|
eye_pos = center + np.array([cos(t)*c, sin(t)*c, s]) * 15.0 + ofs
|
|
target_pos = center + ofs
|
|
|
|
R, self.tvec = common.lookat(eye_pos, target_pos)
|
|
self.rvec = common.mtx2rvec(R)
|
|
|
|
self.draw_quads(dst, self.white_quads, (245, 245, 245))
|
|
self.draw_quads(dst, self.black_quads, (10, 10, 10))
|
|
|
|
|
|
classes = dict(chess=Chess)
|
|
|
|
presets = dict(
|
|
empty = 'synth:',
|
|
lena = 'synth:bg=../cpp/lena.jpg:noise=0.1',
|
|
chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480'
|
|
)
|
|
|
|
|
|
def create_capture(source = 0, fallback = presets['chess']):
|
|
'''source: <int> or '<int>|<filename>|synth [:<param_name>=<value> [:...]]'
|
|
'''
|
|
source = str(source).strip()
|
|
chunks = source.split(':')
|
|
# hanlde drive letter ('c:', ...)
|
|
if len(chunks) > 1 and len(chunks[0]) == 1 and chunks[0].isalpha():
|
|
chunks[1] = chunks[0] + ':' + chunks[1]
|
|
del chunks[0]
|
|
|
|
source = chunks[0]
|
|
try: source = int(source)
|
|
except ValueError: pass
|
|
params = dict( s.split('=') for s in chunks[1:] )
|
|
|
|
cap = None
|
|
if source == 'synth':
|
|
Class = classes.get(params.get('class', None), VideoSynthBase)
|
|
try: cap = Class(**params)
|
|
except: pass
|
|
else:
|
|
cap = cv2.VideoCapture(source)
|
|
if 'size' in params:
|
|
w, h = map(int, params['size'].split('x'))
|
|
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, w)
|
|
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, h)
|
|
if cap is None or not cap.isOpened():
|
|
print 'Warning: unable to open video source: ', source
|
|
if fallback is not None:
|
|
return create_capture(fallback, None)
|
|
return cap
|
|
|
|
if __name__ == '__main__':
|
|
import sys
|
|
import getopt
|
|
|
|
print __doc__
|
|
|
|
args, sources = getopt.getopt(sys.argv[1:], '', 'shotdir=')
|
|
args = dict(args)
|
|
shotdir = args.get('--shotdir', '.')
|
|
if len(sources) == 0:
|
|
sources = [ 0 ]
|
|
|
|
caps = map(create_capture, sources)
|
|
shot_idx = 0
|
|
while True:
|
|
imgs = []
|
|
for i, cap in enumerate(caps):
|
|
ret, img = cap.read()
|
|
imgs.append(img)
|
|
cv2.imshow('capture %d' % i, img)
|
|
ch = 0xFF & cv2.waitKey(1)
|
|
if ch == 27:
|
|
break
|
|
if ch == ord(' '):
|
|
for i, img in enumerate(imgs):
|
|
fn = '%s/shot_%d_%03d.bmp' % (shotdir, i, shot_idx)
|
|
cv2.imwrite(fn, img)
|
|
print fn, 'saved'
|
|
shot_idx += 1
|
|
cv2.destroyAllWindows()
|