64 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
.. _Bayes Classifier:
 | 
						|
 | 
						|
Normal Bayes Classifier
 | 
						|
=======================
 | 
						|
 | 
						|
.. highlight:: cpp
 | 
						|
 | 
						|
This simple classification model assumes that feature vectors from each class are normally distributed (though, not necessarily independently distributed). So, the whole data distribution function is assumed to be a Gaussian mixture, one component per  class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction.
 | 
						|
 | 
						|
.. [Fukunaga90] K. Fukunaga. *Introduction to Statistical Pattern Recognition*. second ed., New York: Academic Press, 1990.
 | 
						|
 | 
						|
CvNormalBayesClassifier
 | 
						|
-----------------------
 | 
						|
.. ocv:class:: CvNormalBayesClassifier : public CvStatModel
 | 
						|
 | 
						|
Bayes classifier for normally distributed data.
 | 
						|
 | 
						|
CvNormalBayesClassifier::CvNormalBayesClassifier
 | 
						|
------------------------------------------------
 | 
						|
Default and training constructors.
 | 
						|
 | 
						|
.. ocv:function:: CvNormalBayesClassifier::CvNormalBayesClassifier()
 | 
						|
 | 
						|
.. ocv:function:: CvNormalBayesClassifier::CvNormalBayesClassifier( const Mat& trainData, const Mat& responses, const Mat& varIdx=Mat(), const Mat& sampleIdx=Mat() )
 | 
						|
 | 
						|
.. ocv:function:: CvNormalBayesClassifier::CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0 )
 | 
						|
 | 
						|
.. ocv:pyfunction:: cv2.NormalBayesClassifier([trainData, responses[, varIdx[, sampleIdx]]]) -> <NormalBayesClassifier object>
 | 
						|
 | 
						|
The constructors follow conventions of :ocv:func:`CvStatModel::CvStatModel`. See :ocv:func:`CvStatModel::train` for parameters descriptions.
 | 
						|
 | 
						|
CvNormalBayesClassifier::train
 | 
						|
------------------------------
 | 
						|
Trains the model.
 | 
						|
 | 
						|
.. ocv:function:: bool CvNormalBayesClassifier::train( const Mat& trainData, const Mat& responses, const Mat& varIdx = Mat(), const Mat& sampleIdx=Mat(), bool update=false )
 | 
						|
 | 
						|
.. ocv:function:: bool CvNormalBayesClassifier::train( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false )
 | 
						|
 | 
						|
.. ocv:pyfunction:: cv2.NormalBayesClassifier.train(trainData, responses[, varIdx[, sampleIdx[, update]]]) -> retval
 | 
						|
 | 
						|
    :param update: Identifies whether the model should be trained from scratch (``update=false``) or should be updated using the new training data (``update=true``).
 | 
						|
 | 
						|
The method trains the Normal Bayes classifier. It follows the conventions of the generic :ocv:func:`CvStatModel::train` approach with the following limitations:
 | 
						|
 | 
						|
* Only ``CV_ROW_SAMPLE`` data layout is supported.
 | 
						|
* Input variables are all ordered.
 | 
						|
* Output variable is categorical , which means that elements of ``responses`` must be integer numbers, though the vector may have the ``CV_32FC1`` type.
 | 
						|
* Missing measurements are not supported.
 | 
						|
 | 
						|
CvNormalBayesClassifier::predict
 | 
						|
--------------------------------
 | 
						|
Predicts the response for sample(s).
 | 
						|
 | 
						|
.. ocv:function:: float CvNormalBayesClassifier::predict(  const Mat& samples,  Mat* results=0, Mat* results_prob=0 ) const
 | 
						|
 | 
						|
.. ocv:function:: float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results=0, CvMat* results_prob=0 ) const
 | 
						|
 | 
						|
.. ocv:pyfunction:: cv2.NormalBayesClassifier.predict(samples) -> retval, results
 | 
						|
 | 
						|
The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix ``samples``. In case of multiple input vectors, there should be one output vector ``results``. The predicted class for a single input vector is returned by the method. The vector ``results_prob`` contains the output probabilities coresponding to each element of ``result``.
 | 
						|
 | 
						|
The function is parallelized with the TBB library.
 |