339 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "clapack.h"
 | |
| 
 | |
| /* Subroutine */ int slagts_(integer *job, integer *n, real *a, real *b, real 
 | |
| 	*c__, real *d__, integer *in, real *y, real *tol, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2, r__3, r__4, r__5;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double r_sign(real *, real *);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer k;
 | |
|     real ak, eps, temp, pert, absak, sfmin;
 | |
|     extern doublereal slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
|     real bignum;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.1) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  SLAGTS may be used to solve one of the systems of equations */
 | |
| 
 | |
| /*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y, */
 | |
| 
 | |
| /*  where T is an n by n tridiagonal matrix, for x, following the */
 | |
| /*  factorization of (T - lambda*I) as */
 | |
| 
 | |
| /*     (T - lambda*I) = P*L*U , */
 | |
| 
 | |
| /*  by routine SLAGTF. The choice of equation to be solved is */
 | |
| /*  controlled by the argument JOB, and in each case there is an option */
 | |
| /*  to perturb zero or very small diagonal elements of U, this option */
 | |
| /*  being intended for use in applications such as inverse iteration. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  JOB     (input) INTEGER */
 | |
| /*          Specifies the job to be performed by SLAGTS as follows: */
 | |
| /*          =  1: The equations  (T - lambda*I)x = y  are to be solved, */
 | |
| /*                but diagonal elements of U are not to be perturbed. */
 | |
| /*          = -1: The equations  (T - lambda*I)x = y  are to be solved */
 | |
| /*                and, if overflow would otherwise occur, the diagonal */
 | |
| /*                elements of U are to be perturbed. See argument TOL */
 | |
| /*                below. */
 | |
| /*          =  2: The equations  (T - lambda*I)'x = y  are to be solved, */
 | |
| /*                but diagonal elements of U are not to be perturbed. */
 | |
| /*          = -2: The equations  (T - lambda*I)'x = y  are to be solved */
 | |
| /*                and, if overflow would otherwise occur, the diagonal */
 | |
| /*                elements of U are to be perturbed. See argument TOL */
 | |
| /*                below. */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix T. */
 | |
| 
 | |
| /*  A       (input) REAL array, dimension (N) */
 | |
| /*          On entry, A must contain the diagonal elements of U as */
 | |
| /*          returned from SLAGTF. */
 | |
| 
 | |
| /*  B       (input) REAL array, dimension (N-1) */
 | |
| /*          On entry, B must contain the first super-diagonal elements of */
 | |
| /*          U as returned from SLAGTF. */
 | |
| 
 | |
| /*  C       (input) REAL array, dimension (N-1) */
 | |
| /*          On entry, C must contain the sub-diagonal elements of L as */
 | |
| /*          returned from SLAGTF. */
 | |
| 
 | |
| /*  D       (input) REAL array, dimension (N-2) */
 | |
| /*          On entry, D must contain the second super-diagonal elements */
 | |
| /*          of U as returned from SLAGTF. */
 | |
| 
 | |
| /*  IN      (input) INTEGER array, dimension (N) */
 | |
| /*          On entry, IN must contain details of the matrix P as returned */
 | |
| /*          from SLAGTF. */
 | |
| 
 | |
| /*  Y       (input/output) REAL array, dimension (N) */
 | |
| /*          On entry, the right hand side vector y. */
 | |
| /*          On exit, Y is overwritten by the solution vector x. */
 | |
| 
 | |
| /*  TOL     (input/output) REAL */
 | |
| /*          On entry, with  JOB .lt. 0, TOL should be the minimum */
 | |
| /*          perturbation to be made to very small diagonal elements of U. */
 | |
| /*          TOL should normally be chosen as about eps*norm(U), where eps */
 | |
| /*          is the relative machine precision, but if TOL is supplied as */
 | |
| /*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ). */
 | |
| /*          If  JOB .gt. 0  then TOL is not referenced. */
 | |
| 
 | |
| /*          On exit, TOL is changed as described above, only if TOL is */
 | |
| /*          non-positive on entry. Otherwise TOL is unchanged. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0   : successful exit */
 | |
| /*          .lt. 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /*          .gt. 0: overflow would occur when computing the INFO(th) */
 | |
| /*                  element of the solution vector x. This can only occur */
 | |
| /*                  when JOB is supplied as positive and either means */
 | |
| /*                  that a diagonal element of U is very small, or that */
 | |
| /*                  the elements of the right-hand side vector y are very */
 | |
| /*                  large. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --y;
 | |
|     --in;
 | |
|     --d__;
 | |
|     --c__;
 | |
|     --b;
 | |
|     --a;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (abs(*job) > 2 || *job == 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLAGTS", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     eps = slamch_("Epsilon");
 | |
|     sfmin = slamch_("Safe minimum");
 | |
|     bignum = 1.f / sfmin;
 | |
| 
 | |
|     if (*job < 0) {
 | |
| 	if (*tol <= 0.f) {
 | |
| 	    *tol = dabs(a[1]);
 | |
| 	    if (*n > 1) {
 | |
| /* Computing MAX */
 | |
| 		r__1 = *tol, r__2 = dabs(a[2]), r__1 = max(r__1,r__2), r__2 = 
 | |
| 			dabs(b[1]);
 | |
| 		*tol = dmax(r__1,r__2);
 | |
| 	    }
 | |
| 	    i__1 = *n;
 | |
| 	    for (k = 3; k <= i__1; ++k) {
 | |
| /* Computing MAX */
 | |
| 		r__4 = *tol, r__5 = (r__1 = a[k], dabs(r__1)), r__4 = max(
 | |
| 			r__4,r__5), r__5 = (r__2 = b[k - 1], dabs(r__2)), 
 | |
| 			r__4 = max(r__4,r__5), r__5 = (r__3 = d__[k - 2], 
 | |
| 			dabs(r__3));
 | |
| 		*tol = dmax(r__4,r__5);
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	    *tol *= eps;
 | |
| 	    if (*tol == 0.f) {
 | |
| 		*tol = eps;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (abs(*job) == 1) {
 | |
| 	i__1 = *n;
 | |
| 	for (k = 2; k <= i__1; ++k) {
 | |
| 	    if (in[k - 1] == 0) {
 | |
| 		y[k] -= c__[k - 1] * y[k - 1];
 | |
| 	    } else {
 | |
| 		temp = y[k - 1];
 | |
| 		y[k - 1] = y[k];
 | |
| 		y[k] = temp - c__[k - 1] * y[k];
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 	if (*job == 1) {
 | |
| 	    for (k = *n; k >= 1; --k) {
 | |
| 		if (k <= *n - 2) {
 | |
| 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
 | |
| 		} else if (k == *n - 1) {
 | |
| 		    temp = y[k] - b[k] * y[k + 1];
 | |
| 		} else {
 | |
| 		    temp = y[k];
 | |
| 		}
 | |
| 		ak = a[k];
 | |
| 		absak = dabs(ak);
 | |
| 		if (absak < 1.f) {
 | |
| 		    if (absak < sfmin) {
 | |
| 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
 | |
| 			    *info = k;
 | |
| 			    return 0;
 | |
| 			} else {
 | |
| 			    temp *= bignum;
 | |
| 			    ak *= bignum;
 | |
| 			}
 | |
| 		    } else if (dabs(temp) > absak * bignum) {
 | |
| 			*info = k;
 | |
| 			return 0;
 | |
| 		    }
 | |
| 		}
 | |
| 		y[k] = temp / ak;
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    for (k = *n; k >= 1; --k) {
 | |
| 		if (k <= *n - 2) {
 | |
| 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
 | |
| 		} else if (k == *n - 1) {
 | |
| 		    temp = y[k] - b[k] * y[k + 1];
 | |
| 		} else {
 | |
| 		    temp = y[k];
 | |
| 		}
 | |
| 		ak = a[k];
 | |
| 		pert = r_sign(tol, &ak);
 | |
| L40:
 | |
| 		absak = dabs(ak);
 | |
| 		if (absak < 1.f) {
 | |
| 		    if (absak < sfmin) {
 | |
| 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
 | |
| 			    ak += pert;
 | |
| 			    pert *= 2;
 | |
| 			    goto L40;
 | |
| 			} else {
 | |
| 			    temp *= bignum;
 | |
| 			    ak *= bignum;
 | |
| 			}
 | |
| 		    } else if (dabs(temp) > absak * bignum) {
 | |
| 			ak += pert;
 | |
| 			pert *= 2;
 | |
| 			goto L40;
 | |
| 		    }
 | |
| 		}
 | |
| 		y[k] = temp / ak;
 | |
| /* L50: */
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Come to here if  JOB = 2 or -2 */
 | |
| 
 | |
| 	if (*job == 2) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (k = 1; k <= i__1; ++k) {
 | |
| 		if (k >= 3) {
 | |
| 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
 | |
| 		} else if (k == 2) {
 | |
| 		    temp = y[k] - b[k - 1] * y[k - 1];
 | |
| 		} else {
 | |
| 		    temp = y[k];
 | |
| 		}
 | |
| 		ak = a[k];
 | |
| 		absak = dabs(ak);
 | |
| 		if (absak < 1.f) {
 | |
| 		    if (absak < sfmin) {
 | |
| 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
 | |
| 			    *info = k;
 | |
| 			    return 0;
 | |
| 			} else {
 | |
| 			    temp *= bignum;
 | |
| 			    ak *= bignum;
 | |
| 			}
 | |
| 		    } else if (dabs(temp) > absak * bignum) {
 | |
| 			*info = k;
 | |
| 			return 0;
 | |
| 		    }
 | |
| 		}
 | |
| 		y[k] = temp / ak;
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (k = 1; k <= i__1; ++k) {
 | |
| 		if (k >= 3) {
 | |
| 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
 | |
| 		} else if (k == 2) {
 | |
| 		    temp = y[k] - b[k - 1] * y[k - 1];
 | |
| 		} else {
 | |
| 		    temp = y[k];
 | |
| 		}
 | |
| 		ak = a[k];
 | |
| 		pert = r_sign(tol, &ak);
 | |
| L70:
 | |
| 		absak = dabs(ak);
 | |
| 		if (absak < 1.f) {
 | |
| 		    if (absak < sfmin) {
 | |
| 			if (absak == 0.f || dabs(temp) * sfmin > absak) {
 | |
| 			    ak += pert;
 | |
| 			    pert *= 2;
 | |
| 			    goto L70;
 | |
| 			} else {
 | |
| 			    temp *= bignum;
 | |
| 			    ak *= bignum;
 | |
| 			}
 | |
| 		    } else if (dabs(temp) > absak * bignum) {
 | |
| 			ak += pert;
 | |
| 			pert *= 2;
 | |
| 			goto L70;
 | |
| 		    }
 | |
| 		}
 | |
| 		y[k] = temp / ak;
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (k = *n; k >= 2; --k) {
 | |
| 	    if (in[k - 1] == 0) {
 | |
| 		y[k - 1] -= c__[k - 1] * y[k];
 | |
| 	    } else {
 | |
| 		temp = y[k - 1];
 | |
| 		y[k - 1] = y[k];
 | |
| 		y[k] = temp - c__[k - 1] * y[k];
 | |
| 	    }
 | |
| /* L90: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     End of SLAGTS */
 | |
| 
 | |
|     return 0;
 | |
| } /* slagts_ */
 | 
