222 lines
7.7 KiB
C++
222 lines
7.7 KiB
C++
//*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/contrib/hybridtracker.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
CvFeatureTracker::CvFeatureTracker(CvFeatureTrackerParams _params) :
|
|
params(_params)
|
|
{
|
|
switch (params.feature_type)
|
|
{
|
|
case CvFeatureTrackerParams::SIFT:
|
|
dd = Algorithm::create<Feature2D>("Feature2D.SIFT");
|
|
if( dd.empty() )
|
|
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SIFT support");
|
|
dd->set("nOctaveLayers", 5);
|
|
dd->set("contrastThreshold", 0.04);
|
|
dd->set("edgeThreshold", 10.7);
|
|
case CvFeatureTrackerParams::SURF:
|
|
dd = Algorithm::create<Feature2D>("Feature2D.SURF");
|
|
if( dd.empty() )
|
|
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SURF support");
|
|
dd->set("hessianThreshold", 400);
|
|
dd->set("nOctaves", 3);
|
|
dd->set("nOctaveLayers", 4);
|
|
default:
|
|
CV_Error(CV_StsBadArg, "Unknown feature type");
|
|
}
|
|
|
|
matcher = new BFMatcher(NORM_L2);
|
|
}
|
|
|
|
CvFeatureTracker::~CvFeatureTracker()
|
|
{
|
|
}
|
|
|
|
void CvFeatureTracker::newTrackingWindow(Mat image, Rect selection)
|
|
{
|
|
image.copyTo(prev_image);
|
|
cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);
|
|
prev_trackwindow = selection;
|
|
prev_center.x = selection.x;
|
|
prev_center.y = selection.y;
|
|
ittr = 0;
|
|
}
|
|
|
|
Rect CvFeatureTracker::updateTrackingWindow(Mat image)
|
|
{
|
|
if(params.feature_type == CvFeatureTrackerParams::OPTICAL_FLOW)
|
|
return updateTrackingWindowWithFlow(image);
|
|
else
|
|
return updateTrackingWindowWithSIFT(image);
|
|
}
|
|
|
|
Rect CvFeatureTracker::updateTrackingWindowWithSIFT(Mat image)
|
|
{
|
|
ittr++;
|
|
vector<KeyPoint> prev_keypoints, curr_keypoints;
|
|
vector<Point2f> prev_keys, curr_keys;
|
|
Mat prev_desc, curr_desc;
|
|
|
|
Rect window = prev_trackwindow;
|
|
Mat mask = Mat::zeros(image.size(), CV_8UC1);
|
|
rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
|
|
window.y + window.height), Scalar(255), CV_FILLED);
|
|
|
|
dd->operator()(prev_image, mask, prev_keypoints, prev_desc);
|
|
|
|
window.x -= params.window_size;
|
|
window.y -= params.window_size;
|
|
window.width += params.window_size;
|
|
window.height += params.window_size;
|
|
rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
|
|
window.y + window.height), Scalar(255), CV_FILLED);
|
|
|
|
dd->operator()(image, mask, curr_keypoints, curr_desc);
|
|
|
|
if (prev_keypoints.size() > 4 && curr_keypoints.size() > 4)
|
|
{
|
|
//descriptor->compute(prev_image, prev_keypoints, prev_desc);
|
|
//descriptor->compute(image, curr_keypoints, curr_desc);
|
|
|
|
matcher->match(prev_desc, curr_desc, matches);
|
|
|
|
for (int i = 0; i < (int)matches.size(); i++)
|
|
{
|
|
prev_keys.push_back(prev_keypoints[matches[i].queryIdx].pt);
|
|
curr_keys.push_back(curr_keypoints[matches[i].trainIdx].pt);
|
|
}
|
|
|
|
Mat T = findHomography(prev_keys, curr_keys, CV_LMEDS);
|
|
|
|
prev_trackwindow.x += cvRound(T.at<double> (0, 2));
|
|
prev_trackwindow.y += cvRound(T.at<double> (1, 2));
|
|
}
|
|
|
|
prev_center.x = prev_trackwindow.x;
|
|
prev_center.y = prev_trackwindow.y;
|
|
prev_image = image;
|
|
return prev_trackwindow;
|
|
}
|
|
|
|
Rect CvFeatureTracker::updateTrackingWindowWithFlow(Mat image)
|
|
{
|
|
ittr++;
|
|
Size subPixWinSize(10,10), winSize(31,31);
|
|
Mat image_bw;
|
|
TermCriteria termcrit(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03);
|
|
vector<uchar> status;
|
|
vector<float> err;
|
|
|
|
cvtColor(image, image_bw, CV_BGR2GRAY);
|
|
cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);
|
|
|
|
if (ittr == 1)
|
|
{
|
|
Mat mask = Mat::zeros(image.size(), CV_8UC1);
|
|
rectangle(mask, Point(prev_trackwindow.x, prev_trackwindow.y), Point(
|
|
prev_trackwindow.x + prev_trackwindow.width, prev_trackwindow.y
|
|
+ prev_trackwindow.height), Scalar(255), CV_FILLED);
|
|
goodFeaturesToTrack(image_bw, features[1], 500, 0.01, 20, mask, 3, 0, 0.04);
|
|
cornerSubPix(image_bw, features[1], subPixWinSize, Size(-1, -1), termcrit);
|
|
}
|
|
else
|
|
{
|
|
calcOpticalFlowPyrLK(prev_image_bw, image_bw, features[0], features[1],
|
|
status, err, winSize, 3, termcrit);
|
|
|
|
Point2f feature0_center(0, 0);
|
|
Point2f feature1_center(0, 0);
|
|
int goodtracks = 0;
|
|
for (int i = 0; i < (int)features[1].size(); i++)
|
|
{
|
|
if (status[i] == 1)
|
|
{
|
|
feature0_center.x += features[0][i].x;
|
|
feature0_center.y += features[0][i].y;
|
|
feature1_center.x += features[1][i].x;
|
|
feature1_center.y += features[1][i].y;
|
|
goodtracks++;
|
|
}
|
|
}
|
|
|
|
feature0_center.x /= goodtracks;
|
|
feature0_center.y /= goodtracks;
|
|
feature1_center.x /= goodtracks;
|
|
feature1_center.y /= goodtracks;
|
|
|
|
prev_center.x += (feature1_center.x - feature0_center.x);
|
|
prev_center.y += (feature1_center.y - feature0_center.y);
|
|
|
|
prev_trackwindow.x = (int)prev_center.x;
|
|
prev_trackwindow.y = (int)prev_center.y;
|
|
}
|
|
|
|
swap(features[0], features[1]);
|
|
image.copyTo(prev_image);
|
|
return prev_trackwindow;
|
|
}
|
|
|
|
void CvFeatureTracker::setTrackingWindow(Rect _window)
|
|
{
|
|
prev_trackwindow = _window;
|
|
}
|
|
|
|
Rect CvFeatureTracker::getTrackingWindow()
|
|
{
|
|
return prev_trackwindow;
|
|
}
|
|
|
|
Point2f CvFeatureTracker::getTrackingCenter()
|
|
{
|
|
Point2f center(0, 0);
|
|
center.x = (float)(prev_center.x + prev_trackwindow.width/2.0);
|
|
center.y = (float)(prev_center.y + prev_trackwindow.height/2.0);
|
|
return center;
|
|
}
|
|
|