1380 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1380 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "boost.h"
 | 
						|
#include "cascadeclassifier.h"
 | 
						|
#include <queue>
 | 
						|
#include "cxmisc.h"
 | 
						|
 | 
						|
using namespace std;
 | 
						|
 | 
						|
static inline double
 | 
						|
logRatio( double val )
 | 
						|
{
 | 
						|
    const double eps = 1e-5;
 | 
						|
 | 
						|
    val = max( val, eps );
 | 
						|
    val = min( val, 1. - eps );
 | 
						|
    return log( val/(1. - val) );
 | 
						|
}
 | 
						|
 | 
						|
#define CV_CMP_FLT(i,j) (i < j)
 | 
						|
static CV_IMPLEMENT_QSORT_EX( icvSortFlt, float, CV_CMP_FLT, const float* )
 | 
						|
 | 
						|
#define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j])
 | 
						|
static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* )
 | 
						|
static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* )
 | 
						|
 | 
						|
#define CV_THRESHOLD_EPS (0.00001F)
 | 
						|
 | 
						|
static const int MinBlockSize = 1 << 16;
 | 
						|
static const int BlockSizeDelta = 1 << 10;
 | 
						|
 | 
						|
//----------------------------- CascadeBoostParams -------------------------------------------------
 | 
						|
 | 
						|
CvCascadeBoostParams::CvCascadeBoostParams() : minHitRate( 0.995F), maxFalseAlarm( 0.5F )
 | 
						|
{  
 | 
						|
    boost_type = CvBoost::GENTLE;
 | 
						|
    use_surrogates = use_1se_rule = truncate_pruned_tree = false;
 | 
						|
}
 | 
						|
 | 
						|
CvCascadeBoostParams::CvCascadeBoostParams( int _boostType,
 | 
						|
        float _minHitRate, float _maxFalseAlarm,
 | 
						|
        double _weightTrimRate, int _maxDepth, int _maxWeakCount ) :
 | 
						|
    CvBoostParams( _boostType, _maxWeakCount, _weightTrimRate, _maxDepth, false, 0 )
 | 
						|
{
 | 
						|
    boost_type = CvBoost::GENTLE;
 | 
						|
    minHitRate = _minHitRate;
 | 
						|
    maxFalseAlarm = _maxFalseAlarm;
 | 
						|
    use_surrogates = use_1se_rule = truncate_pruned_tree = false;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostParams::write( FileStorage &fs ) const
 | 
						|
{
 | 
						|
    String boostTypeStr = boost_type == CvBoost::DISCRETE ? CC_DISCRETE_BOOST : 
 | 
						|
                          boost_type == CvBoost::REAL ? CC_REAL_BOOST :
 | 
						|
                          boost_type == CvBoost::LOGIT ? CC_LOGIT_BOOST :
 | 
						|
                          boost_type == CvBoost::GENTLE ? CC_GENTLE_BOOST : String();
 | 
						|
    CV_Assert( !boostTypeStr.empty() );
 | 
						|
    fs << CC_BOOST_TYPE << boostTypeStr;
 | 
						|
    fs << CC_MINHITRATE << minHitRate;
 | 
						|
    fs << CC_MAXFALSEALARM << maxFalseAlarm;
 | 
						|
    fs << CC_TRIM_RATE << weight_trim_rate;
 | 
						|
    fs << CC_MAX_DEPTH << max_depth;
 | 
						|
    fs << CC_WEAK_COUNT << weak_count;
 | 
						|
}
 | 
						|
 | 
						|
bool CvCascadeBoostParams::read( const FileNode &node )
 | 
						|
{
 | 
						|
    String boostTypeStr;
 | 
						|
    FileNode rnode = node[CC_BOOST_TYPE];
 | 
						|
    rnode >> boostTypeStr;
 | 
						|
    boost_type = !boostTypeStr.compare( CC_DISCRETE_BOOST ) ? CvBoost::DISCRETE :
 | 
						|
                 !boostTypeStr.compare( CC_REAL_BOOST ) ? CvBoost::REAL :
 | 
						|
                 !boostTypeStr.compare( CC_LOGIT_BOOST ) ? CvBoost::LOGIT :
 | 
						|
                 !boostTypeStr.compare( CC_GENTLE_BOOST ) ? CvBoost::GENTLE : -1;
 | 
						|
    if (boost_type == -1)
 | 
						|
        CV_Error( CV_StsBadArg, "unsupported Boost type" );
 | 
						|
    node[CC_MINHITRATE] >> minHitRate;
 | 
						|
    node[CC_MAXFALSEALARM] >> maxFalseAlarm;
 | 
						|
    node[CC_TRIM_RATE] >> weight_trim_rate ;
 | 
						|
    node[CC_MAX_DEPTH] >> max_depth ;
 | 
						|
    node[CC_WEAK_COUNT] >> weak_count ;
 | 
						|
    if ( minHitRate <= 0 || minHitRate > 1 ||
 | 
						|
         maxFalseAlarm <= 0 || maxFalseAlarm > 1 ||
 | 
						|
         weight_trim_rate <= 0 || weight_trim_rate > 1 ||
 | 
						|
         max_depth <= 0 || weak_count <= 0 )
 | 
						|
        CV_Error( CV_StsBadArg, "bad parameters range");
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostParams::printDefaults() const
 | 
						|
{
 | 
						|
    cout << "--boostParams--" << endl;
 | 
						|
    cout << "  [-bt <{" << CC_DISCRETE_BOOST << ", " 
 | 
						|
                        << CC_REAL_BOOST << ", "
 | 
						|
                        << CC_LOGIT_BOOST ", "
 | 
						|
                        << CC_GENTLE_BOOST << "(default)}>]" << endl;
 | 
						|
    cout << "  [-minHitRate <min_hit_rate> = " << minHitRate << ">]" << endl;
 | 
						|
    cout << "  [-maxFalseAlarmRate <max_false_alarm_rate = " << maxFalseAlarm << ">]" << endl;
 | 
						|
    cout << "  [-weightTrimRate <weight_trim_rate = " << weight_trim_rate << ">]" << endl;
 | 
						|
    cout << "  [-maxDepth <max_depth_of_weak_tree = " << max_depth << ">]" << endl;
 | 
						|
    cout << "  [-maxWeakCount <max_weak_tree_count = " << weak_count << ">]" << endl;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostParams::printAttrs() const
 | 
						|
{
 | 
						|
    String boostTypeStr = boost_type == CvBoost::DISCRETE ? CC_DISCRETE_BOOST : 
 | 
						|
                          boost_type == CvBoost::REAL ? CC_REAL_BOOST :
 | 
						|
                          boost_type == CvBoost::LOGIT  ? CC_LOGIT_BOOST :
 | 
						|
                          boost_type == CvBoost::GENTLE ? CC_GENTLE_BOOST : String();
 | 
						|
    CV_Assert( !boostTypeStr.empty() );
 | 
						|
    cout << "boostType: " << boostTypeStr << endl;
 | 
						|
    cout << "minHitRate: " << minHitRate << endl;
 | 
						|
    cout << "maxFalseAlarmRate: " <<  maxFalseAlarm << endl;
 | 
						|
    cout << "weightTrimRate: " << weight_trim_rate << endl;
 | 
						|
    cout << "maxDepth: " << max_depth << endl;
 | 
						|
    cout << "maxWeakCount: " << weak_count << endl;
 | 
						|
}
 | 
						|
 | 
						|
bool CvCascadeBoostParams::scanAttr( const String prmName, const String val)
 | 
						|
{
 | 
						|
    bool res = true;
 | 
						|
 | 
						|
    if( !prmName.compare( "-bt" ) )
 | 
						|
    {
 | 
						|
        boost_type = !val.compare( CC_DISCRETE_BOOST ) ? CvBoost::DISCRETE :
 | 
						|
                     !val.compare( CC_REAL_BOOST ) ? CvBoost::REAL :
 | 
						|
                     !val.compare( CC_LOGIT_BOOST ) ? CvBoost::LOGIT :
 | 
						|
                     !val.compare( CC_GENTLE_BOOST ) ? CvBoost::GENTLE : -1;
 | 
						|
        if (boost_type == -1)
 | 
						|
            res = false;
 | 
						|
    }
 | 
						|
    else if( !prmName.compare( "-minHitRate" ) )
 | 
						|
    {
 | 
						|
        minHitRate = (float) atof( val.c_str() );
 | 
						|
    }
 | 
						|
    else if( !prmName.compare( "-maxFalseAlarmRate" ) )
 | 
						|
    {
 | 
						|
        maxFalseAlarm = (float) atof( val.c_str() );
 | 
						|
    }
 | 
						|
    else if( !prmName.compare( "-weightTrimRate" ) )
 | 
						|
    {
 | 
						|
        weight_trim_rate = (float) atof( val.c_str() );
 | 
						|
    }
 | 
						|
    else if( !prmName.compare( "-maxDepth" ) )
 | 
						|
    {
 | 
						|
        max_depth = atoi( val.c_str() );
 | 
						|
    }
 | 
						|
    else if( !prmName.compare( "-maxWeakCount" ) )
 | 
						|
    {
 | 
						|
        weak_count = atoi( val.c_str() );
 | 
						|
    }
 | 
						|
    else
 | 
						|
        res = false;
 | 
						|
 | 
						|
    return res;        
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------- CascadeBoostTrainData -----------------------------
 | 
						|
 | 
						|
CvCascadeBoostTrainData::CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator,
 | 
						|
                                                  const CvDTreeParams& _params )
 | 
						|
{
 | 
						|
    is_classifier = true;
 | 
						|
    var_all = var_count = (int)_featureEvaluator->getNumFeatures();
 | 
						|
 | 
						|
    featureEvaluator = _featureEvaluator;
 | 
						|
    shared = true;
 | 
						|
    set_params( _params );
 | 
						|
    max_c_count = MAX( 2, featureEvaluator->getMaxCatCount() );
 | 
						|
    var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 );
 | 
						|
    if ( featureEvaluator->getMaxCatCount() > 0 ) 
 | 
						|
    {
 | 
						|
        numPrecalcIdx = 0;
 | 
						|
        cat_var_count = var_count;
 | 
						|
        ord_var_count = 0;
 | 
						|
        for( int vi = 0; vi < var_count; vi++ )
 | 
						|
        {
 | 
						|
            var_type->data.i[vi] = vi;
 | 
						|
        }    
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cat_var_count = 0;
 | 
						|
        ord_var_count = var_count;
 | 
						|
        for( int vi = 1; vi <= var_count; vi++ )
 | 
						|
        {
 | 
						|
            var_type->data.i[vi-1] = -vi;
 | 
						|
        }        
 | 
						|
    }    
 | 
						|
    var_type->data.i[var_count] = cat_var_count;
 | 
						|
    var_type->data.i[var_count+1] = cat_var_count+1;
 | 
						|
 | 
						|
    int maxSplitSize = cvAlign(sizeof(CvDTreeSplit) + (MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*));
 | 
						|
    int treeBlockSize = MAX((int)sizeof(CvDTreeNode)*8, maxSplitSize);
 | 
						|
    treeBlockSize = MAX(treeBlockSize + BlockSizeDelta, MinBlockSize);
 | 
						|
    tree_storage = cvCreateMemStorage( treeBlockSize );
 | 
						|
    node_heap = cvCreateSet( 0, sizeof(node_heap[0]), sizeof(CvDTreeNode), tree_storage );
 | 
						|
    split_heap = cvCreateSet( 0, sizeof(split_heap[0]), maxSplitSize, tree_storage );  
 | 
						|
}
 | 
						|
 | 
						|
CvCascadeBoostTrainData::CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator,
 | 
						|
                                                 int _numSamples,
 | 
						|
                                                 int _precalcValBufSize, int _precalcIdxBufSize,
 | 
						|
                                                 const CvDTreeParams& _params )
 | 
						|
{
 | 
						|
    setData( _featureEvaluator, _numSamples, _precalcValBufSize, _precalcIdxBufSize, _params );
 | 
						|
}
 | 
						|
 
 | 
						|
void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluator,
 | 
						|
                                      int _numSamples,
 | 
						|
                                      int _precalcValBufSize, int _precalcIdxBufSize,
 | 
						|
									  const CvDTreeParams& _params )
 | 
						|
{    
 | 
						|
    int* idst = 0;
 | 
						|
    unsigned short* udst = 0;
 | 
						|
        
 | 
						|
    clear();
 | 
						|
    shared = true;
 | 
						|
    have_labels = true;
 | 
						|
    have_priors = false;
 | 
						|
    is_classifier = true;
 | 
						|
 | 
						|
    rng = &cv::theRNG();
 | 
						|
 | 
						|
    set_params( _params );
 | 
						|
 | 
						|
    CV_Assert( _featureEvaluator );
 | 
						|
    featureEvaluator = _featureEvaluator;
 | 
						|
 | 
						|
    max_c_count = MAX( 2, featureEvaluator->getMaxCatCount() );
 | 
						|
    _resp = featureEvaluator->getCls();
 | 
						|
    responses = &_resp;
 | 
						|
    // TODO: check responses: elements must be 0 or 1
 | 
						|
    
 | 
						|
	if( _precalcValBufSize < 0 || _precalcIdxBufSize < 0)
 | 
						|
        CV_Error( CV_StsOutOfRange, "_numPrecalcVal and _numPrecalcIdx must be positive or 0" );
 | 
						|
 | 
						|
	var_count = var_all = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize();
 | 
						|
    sample_count = _numSamples;
 | 
						|
    
 | 
						|
    is_buf_16u = false;     
 | 
						|
    if (sample_count < 65536) 
 | 
						|
        is_buf_16u = true; 
 | 
						|
 | 
						|
    numPrecalcVal = min( cvRound((double)_precalcValBufSize*1048576. / (sizeof(float)*sample_count)), var_count );
 | 
						|
    numPrecalcIdx = min( cvRound((double)_precalcIdxBufSize*1048576. /
 | 
						|
                ((is_buf_16u ? sizeof(unsigned short) : sizeof (int))*sample_count)), var_count );
 | 
						|
 | 
						|
    assert( numPrecalcIdx >= 0 && numPrecalcVal >= 0 );
 | 
						|
 | 
						|
    valCache.create( numPrecalcVal, sample_count, CV_32FC1 );
 | 
						|
    var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 );
 | 
						|
    
 | 
						|
    if ( featureEvaluator->getMaxCatCount() > 0 ) 
 | 
						|
    {
 | 
						|
        numPrecalcIdx = 0;
 | 
						|
        cat_var_count = var_count;
 | 
						|
        ord_var_count = 0;
 | 
						|
        for( int vi = 0; vi < var_count; vi++ )
 | 
						|
        {
 | 
						|
            var_type->data.i[vi] = vi;
 | 
						|
        }    
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cat_var_count = 0;
 | 
						|
        ord_var_count = var_count;
 | 
						|
        for( int vi = 1; vi <= var_count; vi++ )
 | 
						|
        {
 | 
						|
            var_type->data.i[vi-1] = -vi;
 | 
						|
        }        
 | 
						|
    }
 | 
						|
    var_type->data.i[var_count] = cat_var_count;
 | 
						|
    var_type->data.i[var_count+1] = cat_var_count+1;
 | 
						|
    work_var_count = ( cat_var_count ? 0 : numPrecalcIdx ) + 1;
 | 
						|
    buf_size = (work_var_count + 1) * sample_count;
 | 
						|
    buf_count = 2;
 | 
						|
    
 | 
						|
    if ( is_buf_16u )
 | 
						|
        buf = cvCreateMat( buf_count, buf_size, CV_16UC1 );
 | 
						|
    else
 | 
						|
        buf = cvCreateMat( buf_count, buf_size, CV_32SC1 );
 | 
						|
 | 
						|
    cat_count = cvCreateMat( 1, cat_var_count + 1, CV_32SC1 );
 | 
						|
 | 
						|
    // precalculate valCache and set indices in buf
 | 
						|
	precalculate();
 | 
						|
 | 
						|
    // now calculate the maximum size of split,
 | 
						|
    // create memory storage that will keep nodes and splits of the decision tree
 | 
						|
    // allocate root node and the buffer for the whole training data
 | 
						|
    int maxSplitSize = cvAlign(sizeof(CvDTreeSplit) +
 | 
						|
        (MAX(0,sample_count - 33)/32)*sizeof(int),sizeof(void*));
 | 
						|
    int treeBlockSize = MAX((int)sizeof(CvDTreeNode)*8, maxSplitSize);
 | 
						|
    treeBlockSize = MAX(treeBlockSize + BlockSizeDelta, MinBlockSize);
 | 
						|
    tree_storage = cvCreateMemStorage( treeBlockSize );
 | 
						|
    node_heap = cvCreateSet( 0, sizeof(*node_heap), sizeof(CvDTreeNode), tree_storage );
 | 
						|
 | 
						|
    int nvSize = var_count*sizeof(int);
 | 
						|
    nvSize = cvAlign(MAX( nvSize, (int)sizeof(CvSetElem) ), sizeof(void*));
 | 
						|
    int tempBlockSize = nvSize;
 | 
						|
    tempBlockSize = MAX( tempBlockSize + BlockSizeDelta, MinBlockSize );
 | 
						|
    temp_storage = cvCreateMemStorage( tempBlockSize );
 | 
						|
    nv_heap = cvCreateSet( 0, sizeof(*nv_heap), nvSize, temp_storage );
 | 
						|
    
 | 
						|
    data_root = new_node( 0, sample_count, 0, 0 );
 | 
						|
 | 
						|
    // set sample labels
 | 
						|
    if (is_buf_16u)
 | 
						|
        udst = (unsigned short*)(buf->data.s + work_var_count*sample_count);
 | 
						|
    else
 | 
						|
        idst = buf->data.i + work_var_count*sample_count;
 | 
						|
 | 
						|
    for (int si = 0; si < sample_count; si++)
 | 
						|
    {
 | 
						|
        if (udst)
 | 
						|
            udst[si] = (unsigned short)si;
 | 
						|
        else
 | 
						|
            idst[si] = si;
 | 
						|
    }
 | 
						|
    for( int vi = 0; vi < var_count; vi++ )
 | 
						|
        data_root->set_num_valid(vi, sample_count);
 | 
						|
    for( int vi = 0; vi < cat_var_count; vi++ )
 | 
						|
        cat_count->data.i[vi] = max_c_count;
 | 
						|
 | 
						|
    cat_count->data.i[cat_var_count] = 2;
 | 
						|
 | 
						|
    maxSplitSize = cvAlign(sizeof(CvDTreeSplit) +
 | 
						|
        (MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*));
 | 
						|
    split_heap = cvCreateSet( 0, sizeof(*split_heap), maxSplitSize, tree_storage );
 | 
						|
 | 
						|
    priors = cvCreateMat( 1, get_num_classes(), CV_64F );
 | 
						|
    cvSet(priors, cvScalar(1));
 | 
						|
    priors_mult = cvCloneMat( priors );
 | 
						|
    counts = cvCreateMat( 1, get_num_classes(), CV_32SC1 );
 | 
						|
    direction = cvCreateMat( 1, sample_count, CV_8UC1 );
 | 
						|
    split_buf = cvCreateMat( 1, sample_count, CV_32SC1 );
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTrainData::free_train_data()
 | 
						|
{
 | 
						|
    CvDTreeTrainData::free_train_data();
 | 
						|
    valCache.release();
 | 
						|
}
 | 
						|
 | 
						|
const int* CvCascadeBoostTrainData::get_class_labels( CvDTreeNode* n, int* labelsBuf)
 | 
						|
{
 | 
						|
    int nodeSampleCount = n->sample_count; 
 | 
						|
    int rStep = CV_IS_MAT_CONT( responses->type ) ? 1 : responses->step / CV_ELEM_SIZE( responses->type );
 | 
						|
 | 
						|
    int* sampleIndicesBuf = labelsBuf; //
 | 
						|
    const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf);
 | 
						|
    for( int si = 0; si < nodeSampleCount; si++ )
 | 
						|
    {
 | 
						|
        int sidx = sampleIndices[si];
 | 
						|
        labelsBuf[si] = (int)responses->data.fl[sidx*rStep];
 | 
						|
    }    
 | 
						|
    return labelsBuf;
 | 
						|
}
 | 
						|
 | 
						|
const int* CvCascadeBoostTrainData::get_sample_indices( CvDTreeNode* n, int* indicesBuf )
 | 
						|
{
 | 
						|
    return CvDTreeTrainData::get_cat_var_data( n, get_work_var_count(), indicesBuf );
 | 
						|
}
 | 
						|
 | 
						|
const int* CvCascadeBoostTrainData::get_cv_labels( CvDTreeNode* n, int* labels_buf )
 | 
						|
{
 | 
						|
    return CvDTreeTrainData::get_cat_var_data( n, get_work_var_count() - 1, labels_buf );
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* ordValuesBuf, int* sortedIndicesBuf,
 | 
						|
        const float** ordValues, const int** sortedIndices, int* sampleIndicesBuf )
 | 
						|
{
 | 
						|
    int nodeSampleCount = n->sample_count; 
 | 
						|
    const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf);
 | 
						|
    
 | 
						|
    if ( vi < numPrecalcIdx )
 | 
						|
    {
 | 
						|
        if( !is_buf_16u )
 | 
						|
            *sortedIndices = buf->data.i + n->buf_idx*buf->cols + vi*sample_count + n->offset;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            const unsigned short* shortIndices = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols +
 | 
						|
                                                    vi*sample_count + n->offset );
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
                sortedIndicesBuf[i] = shortIndices[i];
 | 
						|
 | 
						|
            *sortedIndices = sortedIndicesBuf;
 | 
						|
        }
 | 
						|
		
 | 
						|
        if( vi < numPrecalcVal )
 | 
						|
        {
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            {
 | 
						|
                int idx = (*sortedIndices)[i];
 | 
						|
                idx = sampleIndices[idx];
 | 
						|
                ordValuesBuf[i] =  valCache.at<float>( vi, idx);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            {
 | 
						|
                int idx = (*sortedIndices)[i];
 | 
						|
                idx = sampleIndices[idx];
 | 
						|
                ordValuesBuf[i] = (*featureEvaluator)( vi, idx);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else // vi >= numPrecalcIdx
 | 
						|
    {
 | 
						|
        cv::AutoBuffer<float> abuf(nodeSampleCount);
 | 
						|
        float* sampleValues = &abuf[0];
 | 
						|
 | 
						|
        if ( vi < numPrecalcVal )
 | 
						|
        {
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            {
 | 
						|
                sortedIndicesBuf[i] = i;
 | 
						|
                sampleValues[i] = valCache.at<float>( vi, sampleIndices[i] );
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            {
 | 
						|
                sortedIndicesBuf[i] = i;
 | 
						|
                sampleValues[i] = (*featureEvaluator)( vi, sampleIndices[i]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        icvSortIntAux( sortedIndicesBuf, nodeSampleCount, &sampleValues[0] );
 | 
						|
        for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            ordValuesBuf[i] = (&sampleValues[0])[sortedIndicesBuf[i]];
 | 
						|
        *sortedIndices = sortedIndicesBuf;
 | 
						|
    }
 | 
						|
	
 | 
						|
    *ordValues = ordValuesBuf;
 | 
						|
}
 | 
						|
 
 | 
						|
const int* CvCascadeBoostTrainData::get_cat_var_data( CvDTreeNode* n, int vi, int* catValuesBuf )
 | 
						|
{
 | 
						|
    int nodeSampleCount = n->sample_count;
 | 
						|
    int* sampleIndicesBuf = catValuesBuf; //
 | 
						|
    const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf);
 | 
						|
 | 
						|
    if ( vi < numPrecalcVal )
 | 
						|
    {
 | 
						|
        for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
            catValuesBuf[i] = (int) valCache.at<float>( vi, sampleIndices[i]);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if( vi >= numPrecalcVal && vi < var_count )
 | 
						|
        {
 | 
						|
            for( int i = 0; i < nodeSampleCount; i++ )
 | 
						|
                catValuesBuf[i] = (int)(*featureEvaluator)( vi, sampleIndices[i] );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            get_cv_labels( n, catValuesBuf );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return catValuesBuf;
 | 
						|
}
 | 
						|
 | 
						|
float CvCascadeBoostTrainData::getVarValue( int vi, int si )
 | 
						|
{
 | 
						|
    if ( vi < numPrecalcVal && !valCache.empty() )
 | 
						|
	    return valCache.at<float>( vi, si );
 | 
						|
	return (*featureEvaluator)( vi, si );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct FeatureIdxOnlyPrecalc
 | 
						|
{
 | 
						|
    FeatureIdxOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, int _sample_count, bool _is_buf_16u )
 | 
						|
    {
 | 
						|
        featureEvaluator = _featureEvaluator;
 | 
						|
        sample_count = _sample_count;
 | 
						|
        udst = (unsigned short*)_buf->data.s;
 | 
						|
        idst = _buf->data.i;
 | 
						|
        is_buf_16u = _is_buf_16u;
 | 
						|
    }
 | 
						|
    void operator()( const BlockedRange& range ) const
 | 
						|
    {
 | 
						|
        cv::AutoBuffer<float> valCache(sample_count);
 | 
						|
        float* valCachePtr = (float*)valCache;
 | 
						|
        for ( int fi = range.begin(); fi < range.end(); fi++)
 | 
						|
        {
 | 
						|
            for( int si = 0; si < sample_count; si++ )
 | 
						|
            {
 | 
						|
                valCachePtr[si] = (*featureEvaluator)( fi, si );
 | 
						|
                if ( is_buf_16u )
 | 
						|
                    *(udst + fi*sample_count + si) = (unsigned short)si;
 | 
						|
                else
 | 
						|
                    *(idst + fi*sample_count + si) = si;
 | 
						|
            }
 | 
						|
            if ( is_buf_16u )
 | 
						|
                icvSortUShAux( udst + fi*sample_count, sample_count, valCachePtr );
 | 
						|
            else
 | 
						|
                icvSortIntAux( idst + fi*sample_count, sample_count, valCachePtr );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    const CvFeatureEvaluator* featureEvaluator;
 | 
						|
    int sample_count;
 | 
						|
    int* idst;
 | 
						|
    unsigned short* udst;
 | 
						|
    bool is_buf_16u;
 | 
						|
};
 | 
						|
 | 
						|
struct FeatureValAndIdxPrecalc
 | 
						|
{
 | 
						|
    FeatureValAndIdxPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, Mat* _valCache, int _sample_count, bool _is_buf_16u )
 | 
						|
    {
 | 
						|
        featureEvaluator = _featureEvaluator;
 | 
						|
        valCache = _valCache;
 | 
						|
        sample_count = _sample_count;
 | 
						|
        udst = (unsigned short*)_buf->data.s;
 | 
						|
        idst = _buf->data.i;
 | 
						|
        is_buf_16u = _is_buf_16u;
 | 
						|
    }
 | 
						|
    void operator()( const BlockedRange& range ) const
 | 
						|
    {
 | 
						|
        for ( int fi = range.begin(); fi < range.end(); fi++)
 | 
						|
        {
 | 
						|
            for( int si = 0; si < sample_count; si++ )
 | 
						|
            {
 | 
						|
                valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si );
 | 
						|
                if ( is_buf_16u )
 | 
						|
                    *(udst + fi*sample_count + si) = (unsigned short)si;
 | 
						|
                else
 | 
						|
                    *(idst + fi*sample_count + si) = si;
 | 
						|
            }
 | 
						|
            if ( is_buf_16u )
 | 
						|
                icvSortUShAux( udst + fi*sample_count, sample_count, valCache->ptr<float>(fi) );
 | 
						|
            else
 | 
						|
                icvSortIntAux( idst + fi*sample_count, sample_count, valCache->ptr<float>(fi) );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    const CvFeatureEvaluator* featureEvaluator;
 | 
						|
    Mat* valCache;
 | 
						|
    int sample_count;
 | 
						|
    int* idst;
 | 
						|
    unsigned short* udst;
 | 
						|
    bool is_buf_16u;
 | 
						|
};
 | 
						|
 | 
						|
struct FeatureValOnlyPrecalc
 | 
						|
{
 | 
						|
    FeatureValOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, Mat* _valCache, int _sample_count )
 | 
						|
    {
 | 
						|
        featureEvaluator = _featureEvaluator;
 | 
						|
        valCache = _valCache;
 | 
						|
        sample_count = _sample_count;
 | 
						|
    }
 | 
						|
    void operator()( const BlockedRange& range ) const
 | 
						|
    {
 | 
						|
        for ( int fi = range.begin(); fi < range.end(); fi++)
 | 
						|
            for( int si = 0; si < sample_count; si++ )
 | 
						|
                valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si );
 | 
						|
    }
 | 
						|
    const CvFeatureEvaluator* featureEvaluator;
 | 
						|
    Mat* valCache;
 | 
						|
    int sample_count;
 | 
						|
};
 | 
						|
 | 
						|
void CvCascadeBoostTrainData::precalculate()
 | 
						|
{
 | 
						|
    int minNum = MIN( numPrecalcVal, numPrecalcIdx);
 | 
						|
 | 
						|
    double proctime = -TIME( 0 );
 | 
						|
    parallel_for( BlockedRange(numPrecalcVal, numPrecalcIdx),
 | 
						|
                  FeatureIdxOnlyPrecalc(featureEvaluator, buf, sample_count, is_buf_16u!=0) );
 | 
						|
    parallel_for( BlockedRange(0, minNum),
 | 
						|
                  FeatureValAndIdxPrecalc(featureEvaluator, buf, &valCache, sample_count, is_buf_16u!=0) );
 | 
						|
    parallel_for( BlockedRange(minNum, numPrecalcVal),
 | 
						|
                  FeatureValOnlyPrecalc(featureEvaluator, &valCache, sample_count) );
 | 
						|
    cout << "Precalculation time: " << (proctime + TIME( 0 )) << endl;
 | 
						|
}
 | 
						|
 | 
						|
//-------------------------------- CascadeBoostTree ----------------------------------------
 | 
						|
 | 
						|
CvDTreeNode* CvCascadeBoostTree::predict( int sampleIdx ) const
 | 
						|
{
 | 
						|
    CvDTreeNode* node = root;
 | 
						|
    if( !node )
 | 
						|
        CV_Error( CV_StsError, "The tree has not been trained yet" );
 | 
						|
   
 | 
						|
    if ( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount() == 0 ) // ordered
 | 
						|
    {
 | 
						|
        while( node->left )
 | 
						|
        {
 | 
						|
            CvDTreeSplit* split = node->split;
 | 
						|
            float val = ((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx );
 | 
						|
            node = val <= split->ord.c ? node->left : node->right;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else // categorical
 | 
						|
    {
 | 
						|
        while( node->left )
 | 
						|
        {
 | 
						|
            CvDTreeSplit* split = node->split;
 | 
						|
            int c = (int)((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx );
 | 
						|
            node = CV_DTREE_CAT_DIR(c, split->subset) < 0 ? node->left : node->right;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTree::write( FileStorage &fs, const Mat& featureMap )
 | 
						|
{
 | 
						|
    int maxCatCount = ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount();
 | 
						|
    int subsetN = (maxCatCount + 31)/32;
 | 
						|
    queue<CvDTreeNode*> internalNodesQueue;
 | 
						|
    int size = (int)pow( 2.f, (float)ensemble->get_params().max_depth);
 | 
						|
    Ptr<float> leafVals = new float[size];
 | 
						|
    int leafValIdx = 0;
 | 
						|
    int internalNodeIdx = 1;
 | 
						|
    CvDTreeNode* tempNode;
 | 
						|
 | 
						|
    CV_DbgAssert( root );
 | 
						|
    internalNodesQueue.push( root );
 | 
						|
 | 
						|
    fs << "{";
 | 
						|
    fs << CC_INTERNAL_NODES << "[:";
 | 
						|
    while (!internalNodesQueue.empty())
 | 
						|
    {
 | 
						|
        tempNode = internalNodesQueue.front();
 | 
						|
        CV_Assert( tempNode->left );
 | 
						|
        if ( !tempNode->left->left && !tempNode->left->right) // left node is leaf
 | 
						|
        {
 | 
						|
            leafVals[-leafValIdx] = (float)tempNode->left->value;
 | 
						|
            fs << leafValIdx-- ;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            internalNodesQueue.push( tempNode->left );
 | 
						|
            fs << internalNodeIdx++;
 | 
						|
        }
 | 
						|
        CV_Assert( tempNode->right );
 | 
						|
        if ( !tempNode->right->left && !tempNode->right->right) // right node is leaf
 | 
						|
        {
 | 
						|
            leafVals[-leafValIdx] = (float)tempNode->right->value;
 | 
						|
            fs << leafValIdx--;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            internalNodesQueue.push( tempNode->right );
 | 
						|
            fs << internalNodeIdx++;
 | 
						|
        }
 | 
						|
        int fidx = tempNode->split->var_idx;
 | 
						|
        fidx = featureMap.empty() ? fidx : featureMap.at<int>(0, fidx);
 | 
						|
        fs << fidx;
 | 
						|
        if ( !maxCatCount )
 | 
						|
            fs << tempNode->split->ord.c;
 | 
						|
        else
 | 
						|
            for( int i = 0; i < subsetN; i++ )
 | 
						|
                fs << tempNode->split->subset[i];
 | 
						|
        internalNodesQueue.pop();
 | 
						|
    }
 | 
						|
    fs << "]"; // CC_INTERNAL_NODES
 | 
						|
 | 
						|
    fs << CC_LEAF_VALUES << "[:";
 | 
						|
    for (int ni = 0; ni < -leafValIdx; ni++)
 | 
						|
        fs << leafVals[ni];
 | 
						|
    fs << "]"; // CC_LEAF_VALUES
 | 
						|
    fs << "}";
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTree::read( const FileNode &node, CvBoost* _ensemble,
 | 
						|
                                CvDTreeTrainData* _data )
 | 
						|
{
 | 
						|
    int maxCatCount = ((CvCascadeBoostTrainData*)_data)->featureEvaluator->getMaxCatCount();
 | 
						|
    int subsetN = (maxCatCount + 31)/32;
 | 
						|
    int step = 3 + ( maxCatCount>0 ? subsetN : 1 );
 | 
						|
    
 | 
						|
    queue<CvDTreeNode*> internalNodesQueue;
 | 
						|
    FileNodeIterator internalNodesIt, leafValsuesIt;
 | 
						|
    CvDTreeNode* prntNode, *cldNode;
 | 
						|
 | 
						|
    clear();
 | 
						|
    data = _data;
 | 
						|
    ensemble = _ensemble;
 | 
						|
    pruned_tree_idx = 0;
 | 
						|
 | 
						|
    // read tree nodes
 | 
						|
    FileNode rnode = node[CC_INTERNAL_NODES];
 | 
						|
    internalNodesIt = rnode.end();
 | 
						|
    leafValsuesIt = node[CC_LEAF_VALUES].end();
 | 
						|
    internalNodesIt--; leafValsuesIt--;
 | 
						|
    for( size_t i = 0; i < rnode.size()/step; i++ )
 | 
						|
    {
 | 
						|
        prntNode = data->new_node( 0, 0, 0, 0 );
 | 
						|
        if ( maxCatCount > 0 )
 | 
						|
        {
 | 
						|
            prntNode->split = data->new_split_cat( 0, 0 );
 | 
						|
            for( int j = subsetN-1; j>=0; j--)
 | 
						|
            {
 | 
						|
                *internalNodesIt >> prntNode->split->subset[j]; internalNodesIt--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            float split_value;
 | 
						|
            *internalNodesIt >> split_value; internalNodesIt--;
 | 
						|
            prntNode->split = data->new_split_ord( 0, split_value, 0, 0, 0);
 | 
						|
        }
 | 
						|
        *internalNodesIt >> prntNode->split->var_idx; internalNodesIt--;
 | 
						|
        int ridx, lidx;
 | 
						|
        *internalNodesIt >> ridx; internalNodesIt--;
 | 
						|
        *internalNodesIt >> lidx;internalNodesIt--;
 | 
						|
        if ( ridx <= 0)
 | 
						|
        {
 | 
						|
            prntNode->right = cldNode = data->new_node( 0, 0, 0, 0 );
 | 
						|
            *leafValsuesIt >> cldNode->value; leafValsuesIt--;
 | 
						|
            cldNode->parent = prntNode;            
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            prntNode->right = internalNodesQueue.front(); 
 | 
						|
            prntNode->right->parent = prntNode;
 | 
						|
            internalNodesQueue.pop();
 | 
						|
        }
 | 
						|
 | 
						|
        if ( lidx <= 0)
 | 
						|
        {
 | 
						|
            prntNode->left = cldNode = data->new_node( 0, 0, 0, 0 );
 | 
						|
            *leafValsuesIt >> cldNode->value; leafValsuesIt--;
 | 
						|
            cldNode->parent = prntNode;            
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            prntNode->left = internalNodesQueue.front();
 | 
						|
            prntNode->left->parent = prntNode;
 | 
						|
            internalNodesQueue.pop();
 | 
						|
        }
 | 
						|
 | 
						|
        internalNodesQueue.push( prntNode );
 | 
						|
    }
 | 
						|
 | 
						|
    root = internalNodesQueue.front();
 | 
						|
    internalNodesQueue.pop();
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
 | 
						|
{
 | 
						|
    int n = node->sample_count, nl, nr, scount = data->sample_count;
 | 
						|
    char* dir = (char*)data->direction->data.ptr;
 | 
						|
    CvDTreeNode *left = 0, *right = 0;
 | 
						|
    int* newIdx = data->split_buf->data.i;
 | 
						|
    int newBufIdx = data->get_child_buf_idx( node );
 | 
						|
    int workVarCount = data->get_work_var_count();
 | 
						|
    CvMat* buf = data->buf;
 | 
						|
    cv::AutoBuffer<uchar> inn_buf(n*(3*sizeof(int)+sizeof(float)));
 | 
						|
    int* tempBuf = (int*)(uchar*)inn_buf;
 | 
						|
    bool splitInputData;
 | 
						|
 | 
						|
    complete_node_dir(node);
 | 
						|
 | 
						|
    for( int i = nl = nr = 0; i < n; i++ )
 | 
						|
    {
 | 
						|
        int d = dir[i];
 | 
						|
        // initialize new indices for splitting ordered variables
 | 
						|
        newIdx[i] = (nl & (d-1)) | (nr & -d); // d ? ri : li
 | 
						|
        nr += d;
 | 
						|
        nl += d^1;
 | 
						|
    }
 | 
						|
 | 
						|
    node->left = left = data->new_node( node, nl, newBufIdx, node->offset );
 | 
						|
    node->right = right = data->new_node( node, nr, newBufIdx, node->offset + nl );
 | 
						|
 | 
						|
    splitInputData = node->depth + 1 < data->params.max_depth &&
 | 
						|
        (node->left->sample_count > data->params.min_sample_count ||
 | 
						|
        node->right->sample_count > data->params.min_sample_count);
 | 
						|
 | 
						|
    // split ordered variables, keep both halves sorted.
 | 
						|
    for( int vi = 0; vi < ((CvCascadeBoostTrainData*)data)->numPrecalcIdx; vi++ )
 | 
						|
    {
 | 
						|
        int ci = data->get_var_type(vi);
 | 
						|
        if( ci >= 0 || !splitInputData )
 | 
						|
            continue;
 | 
						|
 | 
						|
        int n1 = node->get_num_valid(vi);
 | 
						|
        float *src_val_buf = (float*)(tempBuf + n);
 | 
						|
        int *src_sorted_idx_buf = (int*)(src_val_buf + n);
 | 
						|
        int *src_sample_idx_buf = src_sorted_idx_buf + n;
 | 
						|
        const int* src_sorted_idx = 0;
 | 
						|
        const float* src_val = 0;
 | 
						|
        data->get_ord_var_data(node, vi, src_val_buf, src_sorted_idx_buf, &src_val, &src_sorted_idx, src_sample_idx_buf);
 | 
						|
 | 
						|
        for(int i = 0; i < n; i++)
 | 
						|
            tempBuf[i] = src_sorted_idx[i];
 | 
						|
 | 
						|
        if (data->is_buf_16u)
 | 
						|
        {
 | 
						|
            unsigned short *ldst, *rdst, *ldst0, *rdst0;
 | 
						|
            ldst0 = ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + 
 | 
						|
                vi*scount + left->offset);
 | 
						|
            rdst0 = rdst = (unsigned short*)(ldst + nl);
 | 
						|
 | 
						|
            // split sorted
 | 
						|
            for( int i = 0; i < n1; i++ )
 | 
						|
            {
 | 
						|
                int idx = tempBuf[i];
 | 
						|
                int d = dir[idx];
 | 
						|
                idx = newIdx[idx];
 | 
						|
                if (d)
 | 
						|
                {
 | 
						|
                    *rdst = (unsigned short)idx;
 | 
						|
                    rdst++;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    *ldst = (unsigned short)idx;
 | 
						|
                    ldst++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            assert( n1 == n);
 | 
						|
 | 
						|
            left->set_num_valid(vi, (int)(ldst - ldst0));
 | 
						|
            right->set_num_valid(vi, (int)(rdst - rdst0));
 | 
						|
        }   
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int *ldst0, *ldst, *rdst0, *rdst;
 | 
						|
            ldst0 = ldst = buf->data.i + left->buf_idx*buf->cols + 
 | 
						|
                vi*scount + left->offset;
 | 
						|
            rdst0 = rdst = buf->data.i + right->buf_idx*buf->cols + 
 | 
						|
                vi*scount + right->offset;
 | 
						|
 | 
						|
            // split sorted
 | 
						|
            for( int i = 0; i < n1; i++ )
 | 
						|
            {
 | 
						|
                int idx = tempBuf[i];
 | 
						|
                int d = dir[idx];
 | 
						|
                idx = newIdx[idx];
 | 
						|
                if (d)
 | 
						|
                {
 | 
						|
                    *rdst = idx;
 | 
						|
                    rdst++;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    *ldst = idx;
 | 
						|
                    ldst++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            left->set_num_valid(vi, (int)(ldst - ldst0));
 | 
						|
            right->set_num_valid(vi, (int)(rdst - rdst0));
 | 
						|
            CV_Assert( n1 == n);
 | 
						|
        }  
 | 
						|
    }
 | 
						|
 | 
						|
    // split cv_labels using newIdx relocation table
 | 
						|
    int *src_lbls_buf = tempBuf + n;
 | 
						|
    const int* src_lbls = data->get_cv_labels(node, src_lbls_buf);
 | 
						|
 | 
						|
    for(int i = 0; i < n; i++)
 | 
						|
        tempBuf[i] = src_lbls[i];
 | 
						|
 | 
						|
    if (data->is_buf_16u)
 | 
						|
    {
 | 
						|
        unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols + 
 | 
						|
            (workVarCount-1)*scount + left->offset);
 | 
						|
        unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols + 
 | 
						|
            (workVarCount-1)*scount + right->offset);            
 | 
						|
        
 | 
						|
        for( int i = 0; i < n; i++ )
 | 
						|
        {
 | 
						|
            int idx = tempBuf[i];
 | 
						|
            if (dir[i])
 | 
						|
            {
 | 
						|
                *rdst = (unsigned short)idx;
 | 
						|
                rdst++;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                *ldst = (unsigned short)idx;
 | 
						|
                ldst++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        int *ldst = buf->data.i + left->buf_idx*buf->cols + 
 | 
						|
            (workVarCount-1)*scount + left->offset;
 | 
						|
        int *rdst = buf->data.i + right->buf_idx*buf->cols + 
 | 
						|
            (workVarCount-1)*scount + right->offset;
 | 
						|
        
 | 
						|
        for( int i = 0; i < n; i++ )
 | 
						|
        {
 | 
						|
            int idx = tempBuf[i];
 | 
						|
            if (dir[i])
 | 
						|
            {
 | 
						|
                *rdst = idx;
 | 
						|
                rdst++;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                *ldst = idx;
 | 
						|
                ldst++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }        
 | 
						|
    for( int vi = 0; vi < data->var_count; vi++ )
 | 
						|
    {
 | 
						|
        left->set_num_valid(vi, (int)(nl));
 | 
						|
        right->set_num_valid(vi, (int)(nr));
 | 
						|
    }
 | 
						|
 | 
						|
    // split sample indices
 | 
						|
    int *sampleIdx_src_buf = tempBuf + n;
 | 
						|
    const int* sampleIdx_src = data->get_sample_indices(node, sampleIdx_src_buf);
 | 
						|
 | 
						|
    for(int i = 0; i < n; i++)
 | 
						|
        tempBuf[i] = sampleIdx_src[i];
 | 
						|
 | 
						|
    if (data->is_buf_16u)
 | 
						|
    {
 | 
						|
        unsigned short* ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + 
 | 
						|
            workVarCount*scount + left->offset);
 | 
						|
        unsigned short* rdst = (unsigned short*)(buf->data.s + right->buf_idx*buf->cols + 
 | 
						|
            workVarCount*scount + right->offset);
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
        {
 | 
						|
            unsigned short idx = (unsigned short)tempBuf[i];
 | 
						|
            if (dir[i])
 | 
						|
            {
 | 
						|
                *rdst = idx;
 | 
						|
                rdst++;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                *ldst = idx;
 | 
						|
                ldst++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        int* ldst = buf->data.i + left->buf_idx*buf->cols + 
 | 
						|
            workVarCount*scount + left->offset;
 | 
						|
        int* rdst = buf->data.i + right->buf_idx*buf->cols + 
 | 
						|
            workVarCount*scount + right->offset;
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
        {
 | 
						|
            int idx = tempBuf[i];
 | 
						|
            if (dir[i])
 | 
						|
            {
 | 
						|
                *rdst = idx;
 | 
						|
                rdst++;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                *ldst = idx;
 | 
						|
                ldst++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // deallocate the parent node data that is not needed anymore
 | 
						|
    data->free_node_data(node); 
 | 
						|
}
 | 
						|
 | 
						|
void auxMarkFeaturesInMap( const CvDTreeNode* node, Mat& featureMap)
 | 
						|
{
 | 
						|
    if ( node && node->split )
 | 
						|
    {
 | 
						|
        featureMap.ptr<int>(0)[node->split->var_idx] = 1;
 | 
						|
        auxMarkFeaturesInMap( node->left, featureMap );
 | 
						|
        auxMarkFeaturesInMap( node->right, featureMap );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoostTree::markFeaturesInMap( Mat& featureMap )
 | 
						|
{
 | 
						|
    auxMarkFeaturesInMap( root, featureMap );
 | 
						|
}
 | 
						|
 | 
						|
//----------------------------------- CascadeBoost --------------------------------------
 | 
						|
 | 
						|
bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator,
 | 
						|
                           int _numSamples,
 | 
						|
                           int _precalcValBufSize, int _precalcIdxBufSize,
 | 
						|
                           const CvCascadeBoostParams& _params )
 | 
						|
{
 | 
						|
    CV_Assert( !data );
 | 
						|
    clear();
 | 
						|
    data = new CvCascadeBoostTrainData( _featureEvaluator, _numSamples,
 | 
						|
                                        _precalcValBufSize, _precalcIdxBufSize, _params );
 | 
						|
    CvMemStorage *storage = cvCreateMemStorage();
 | 
						|
    weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage );
 | 
						|
    storage = 0;
 | 
						|
 | 
						|
    set_params( _params );
 | 
						|
    if ( (_params.boost_type == LOGIT) || (_params.boost_type == GENTLE) )
 | 
						|
        data->do_responses_copy();
 | 
						|
    
 | 
						|
    update_weights( 0 );
 | 
						|
 | 
						|
    cout << "+----+---------+---------+" << endl;
 | 
						|
    cout << "|  N |    HR   |    FA   |" << endl;
 | 
						|
    cout << "+----+---------+---------+" << endl;
 | 
						|
 | 
						|
    do
 | 
						|
    {
 | 
						|
        CvCascadeBoostTree* tree = new CvCascadeBoostTree;
 | 
						|
        if( !tree->train( data, subsample_mask, this ) )
 | 
						|
        {
 | 
						|
            // TODO: may be should finish the loop (!!!)
 | 
						|
            assert(0);
 | 
						|
            delete tree;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        cvSeqPush( weak, &tree );
 | 
						|
        update_weights( tree );
 | 
						|
        trim_weights();
 | 
						|
    }
 | 
						|
    while( !isErrDesired() && (weak->total < params.weak_count) );
 | 
						|
 | 
						|
    data->is_classifier = true;
 | 
						|
    data->free_train_data();
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
float CvCascadeBoost::predict( int sampleIdx, bool returnSum ) const
 | 
						|
{
 | 
						|
    CV_Assert( weak );
 | 
						|
    double sum = 0;
 | 
						|
    CvSeqReader reader;
 | 
						|
    cvStartReadSeq( weak, &reader );
 | 
						|
    cvSetSeqReaderPos( &reader, 0 );
 | 
						|
    for( int i = 0; i < weak->total; i++ )
 | 
						|
    {
 | 
						|
        CvBoostTree* wtree;
 | 
						|
        CV_READ_SEQ_ELEM( wtree, reader );
 | 
						|
        sum += ((CvCascadeBoostTree*)wtree)->predict(sampleIdx)->value;
 | 
						|
    }
 | 
						|
    if( !returnSum )
 | 
						|
        sum = sum < threshold - CV_THRESHOLD_EPS ? 0.0 : 1.0;
 | 
						|
    return (float)sum;
 | 
						|
}
 | 
						|
 | 
						|
bool CvCascadeBoost::set_params( const CvBoostParams& _params )
 | 
						|
{
 | 
						|
    minHitRate = ((CvCascadeBoostParams&)_params).minHitRate;
 | 
						|
    maxFalseAlarm = ((CvCascadeBoostParams&)_params).maxFalseAlarm;
 | 
						|
    return ( ( minHitRate > 0 ) && ( minHitRate < 1) &&
 | 
						|
        ( maxFalseAlarm > 0 ) && ( maxFalseAlarm < 1) && 
 | 
						|
        CvBoost::set_params( _params ));
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoost::update_weights( CvBoostTree* tree )
 | 
						|
{
 | 
						|
    int n = data->sample_count;
 | 
						|
    double sumW = 0.;
 | 
						|
    int step = 0;
 | 
						|
    float* fdata = 0;
 | 
						|
    int *sampleIdxBuf;
 | 
						|
    const int* sampleIdx = 0;
 | 
						|
    int inn_buf_size = ((params.boost_type == LOGIT) || (params.boost_type == GENTLE) ? n*sizeof(int) : 0) +
 | 
						|
                       ( !tree ? n*sizeof(int) : 0 );
 | 
						|
    cv::AutoBuffer<uchar> inn_buf(inn_buf_size);
 | 
						|
    uchar* cur_inn_buf_pos = (uchar*)inn_buf;
 | 
						|
    if ( (params.boost_type == LOGIT) || (params.boost_type == GENTLE) )
 | 
						|
    {
 | 
						|
        step = CV_IS_MAT_CONT(data->responses_copy->type) ?
 | 
						|
            1 : data->responses_copy->step / CV_ELEM_SIZE(data->responses_copy->type);
 | 
						|
        fdata = data->responses_copy->data.fl;
 | 
						|
        sampleIdxBuf = (int*)cur_inn_buf_pos; cur_inn_buf_pos = (uchar*)(sampleIdxBuf + n);
 | 
						|
        sampleIdx = data->get_sample_indices( data->data_root, sampleIdxBuf );
 | 
						|
    }
 | 
						|
    CvMat* buf = data->buf;
 | 
						|
    if( !tree ) // before training the first tree, initialize weights and other parameters
 | 
						|
    {
 | 
						|
        int* classLabelsBuf = (int*)cur_inn_buf_pos; cur_inn_buf_pos = (uchar*)(classLabelsBuf + n);
 | 
						|
        const int* classLabels = data->get_class_labels(data->data_root, classLabelsBuf);
 | 
						|
        // in case of logitboost and gentle adaboost each weak tree is a regression tree,
 | 
						|
        // so we need to convert class labels to floating-point values
 | 
						|
        double w0 = 1./n;
 | 
						|
        double p[2] = { 1, 1 };
 | 
						|
 | 
						|
        cvReleaseMat( &orig_response );
 | 
						|
        cvReleaseMat( &sum_response );
 | 
						|
        cvReleaseMat( &weak_eval );
 | 
						|
        cvReleaseMat( &subsample_mask );
 | 
						|
        cvReleaseMat( &weights );
 | 
						|
 | 
						|
        orig_response = cvCreateMat( 1, n, CV_32S );
 | 
						|
        weak_eval = cvCreateMat( 1, n, CV_64F );
 | 
						|
        subsample_mask = cvCreateMat( 1, n, CV_8U );
 | 
						|
        weights = cvCreateMat( 1, n, CV_64F );
 | 
						|
        subtree_weights = cvCreateMat( 1, n + 2, CV_64F );
 | 
						|
 | 
						|
        if (data->is_buf_16u)
 | 
						|
        {
 | 
						|
            unsigned short* labels = (unsigned short*)(buf->data.s + data->data_root->buf_idx*buf->cols + 
 | 
						|
                data->data_root->offset + (data->work_var_count-1)*data->sample_count);
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                // save original categorical responses {0,1}, convert them to {-1,1}
 | 
						|
                orig_response->data.i[i] = classLabels[i]*2 - 1;
 | 
						|
                // make all the samples active at start.
 | 
						|
                // later, in trim_weights() deactivate/reactive again some, if need
 | 
						|
                subsample_mask->data.ptr[i] = (uchar)1;
 | 
						|
                // make all the initial weights the same.
 | 
						|
                weights->data.db[i] = w0*p[classLabels[i]];
 | 
						|
                // set the labels to find (from within weak tree learning proc)
 | 
						|
                // the particular sample weight, and where to store the response.
 | 
						|
                labels[i] = (unsigned short)i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int* labels = buf->data.i + data->data_root->buf_idx*buf->cols + 
 | 
						|
                data->data_root->offset + (data->work_var_count-1)*data->sample_count;
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                // save original categorical responses {0,1}, convert them to {-1,1}
 | 
						|
                orig_response->data.i[i] = classLabels[i]*2 - 1;
 | 
						|
                subsample_mask->data.ptr[i] = (uchar)1;
 | 
						|
                weights->data.db[i] = w0*p[classLabels[i]];
 | 
						|
                labels[i] = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if( params.boost_type == LOGIT )
 | 
						|
        {
 | 
						|
            sum_response = cvCreateMat( 1, n, CV_64F );
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                sum_response->data.db[i] = 0;
 | 
						|
                fdata[sampleIdx[i]*step] = orig_response->data.i[i] > 0 ? 2.f : -2.f;
 | 
						|
            }
 | 
						|
 | 
						|
            // in case of logitboost each weak tree is a regression tree.
 | 
						|
            // the target function values are recalculated for each of the trees
 | 
						|
            data->is_classifier = false;
 | 
						|
        }
 | 
						|
        else if( params.boost_type == GENTLE )
 | 
						|
        {
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
                fdata[sampleIdx[i]*step] = (float)orig_response->data.i[i];
 | 
						|
 | 
						|
            data->is_classifier = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // at this moment, for all the samples that participated in the training of the most
 | 
						|
        // recent weak classifier we know the responses. For other samples we need to compute them
 | 
						|
        if( have_subsample )
 | 
						|
        {
 | 
						|
            // invert the subsample mask
 | 
						|
            cvXorS( subsample_mask, cvScalar(1.), subsample_mask );
 | 
						|
            
 | 
						|
            // run tree through all the non-processed samples
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
                if( subsample_mask->data.ptr[i] )
 | 
						|
                {
 | 
						|
                    weak_eval->data.db[i] = ((CvCascadeBoostTree*)tree)->predict( i )->value;
 | 
						|
                }
 | 
						|
        }
 | 
						|
 | 
						|
        // now update weights and other parameters for each type of boosting
 | 
						|
        if( params.boost_type == DISCRETE )
 | 
						|
        {
 | 
						|
            // Discrete AdaBoost:
 | 
						|
            //   weak_eval[i] (=f(x_i)) is in {-1,1}
 | 
						|
            //   err = sum(w_i*(f(x_i) != y_i))/sum(w_i)
 | 
						|
            //   C = log((1-err)/err)
 | 
						|
            //   w_i *= exp(C*(f(x_i) != y_i))
 | 
						|
 | 
						|
            double C, err = 0.;
 | 
						|
            double scale[] = { 1., 0. };
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double w = weights->data.db[i];
 | 
						|
                sumW += w;
 | 
						|
                err += w*(weak_eval->data.db[i] != orig_response->data.i[i]);
 | 
						|
            }
 | 
						|
 | 
						|
            if( sumW != 0 )
 | 
						|
                err /= sumW;
 | 
						|
            C = err = -logRatio( err );
 | 
						|
            scale[1] = exp(err);
 | 
						|
 | 
						|
            sumW = 0;
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double w = weights->data.db[i]*
 | 
						|
                    scale[weak_eval->data.db[i] != orig_response->data.i[i]];
 | 
						|
                sumW += w;
 | 
						|
                weights->data.db[i] = w;
 | 
						|
            }
 | 
						|
 | 
						|
            tree->scale( C );
 | 
						|
        }
 | 
						|
        else if( params.boost_type == REAL )
 | 
						|
        {
 | 
						|
            // Real AdaBoost:
 | 
						|
            //   weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i)
 | 
						|
            //   w_i *= exp(-y_i*f(x_i))
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
                weak_eval->data.db[i] *= -orig_response->data.i[i];
 | 
						|
 | 
						|
            cvExp( weak_eval, weak_eval );
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double w = weights->data.db[i]*weak_eval->data.db[i];
 | 
						|
                sumW += w;
 | 
						|
                weights->data.db[i] = w;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else if( params.boost_type == LOGIT )
 | 
						|
        {
 | 
						|
            // LogitBoost:
 | 
						|
            //   weak_eval[i] = f(x_i) in [-z_max,z_max]
 | 
						|
            //   sum_response = F(x_i).
 | 
						|
            //   F(x_i) += 0.5*f(x_i)
 | 
						|
            //   p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i)))
 | 
						|
            //   reuse weak_eval: weak_eval[i] <- p(x_i)
 | 
						|
            //   w_i = p(x_i)*1(1 - p(x_i))
 | 
						|
            //   z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i)))
 | 
						|
            //   store z_i to the data->data_root as the new target responses
 | 
						|
 | 
						|
            const double lbWeightThresh = FLT_EPSILON;
 | 
						|
            const double lbZMax = 10.;
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double s = sum_response->data.db[i] + 0.5*weak_eval->data.db[i];
 | 
						|
                sum_response->data.db[i] = s;
 | 
						|
                weak_eval->data.db[i] = -2*s;
 | 
						|
            }
 | 
						|
 | 
						|
            cvExp( weak_eval, weak_eval );
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double p = 1./(1. + weak_eval->data.db[i]);
 | 
						|
                double w = p*(1 - p), z;
 | 
						|
                w = MAX( w, lbWeightThresh );
 | 
						|
                weights->data.db[i] = w;
 | 
						|
                sumW += w;
 | 
						|
                if( orig_response->data.i[i] > 0 )
 | 
						|
                {
 | 
						|
                    z = 1./p;
 | 
						|
                    fdata[sampleIdx[i]*step] = (float)min(z, lbZMax);
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    z = 1./(1-p);
 | 
						|
                    fdata[sampleIdx[i]*step] = (float)-min(z, lbZMax);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // Gentle AdaBoost:
 | 
						|
            //   weak_eval[i] = f(x_i) in [-1,1]
 | 
						|
            //   w_i *= exp(-y_i*f(x_i))
 | 
						|
            assert( params.boost_type == GENTLE );
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
                weak_eval->data.db[i] *= -orig_response->data.i[i];
 | 
						|
 | 
						|
            cvExp( weak_eval, weak_eval );
 | 
						|
 | 
						|
            for( int i = 0; i < n; i++ )
 | 
						|
            {
 | 
						|
                double w = weights->data.db[i] * weak_eval->data.db[i];
 | 
						|
                weights->data.db[i] = w;
 | 
						|
                sumW += w;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // renormalize weights
 | 
						|
    if( sumW > FLT_EPSILON )
 | 
						|
    {
 | 
						|
        sumW = 1./sumW;
 | 
						|
        for( int i = 0; i < n; ++i )
 | 
						|
            weights->data.db[i] *= sumW;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool CvCascadeBoost::isErrDesired()
 | 
						|
{
 | 
						|
    int sCount = data->sample_count,
 | 
						|
        numPos = 0, numNeg = 0, numFalse = 0, numPosTrue = 0;
 | 
						|
    vector<float> eval(sCount);
 | 
						|
    
 | 
						|
    for( int i = 0; i < sCount; i++ )
 | 
						|
        if( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getCls( i ) == 1.0F )
 | 
						|
            eval[numPos++] = predict( i, true );
 | 
						|
    icvSortFlt( &eval[0], numPos, 0 );
 | 
						|
    int thresholdIdx = (int)((1.0F - minHitRate) * numPos);
 | 
						|
    threshold = eval[ thresholdIdx ];
 | 
						|
    numPosTrue = numPos - thresholdIdx;
 | 
						|
    for( int i = thresholdIdx - 1; i >= 0; i--)
 | 
						|
        if ( abs( eval[i] - threshold) < FLT_EPSILON )
 | 
						|
            numPosTrue++;
 | 
						|
    float hitRate = ((float) numPosTrue) / ((float) numPos);
 | 
						|
 | 
						|
    for( int i = 0; i < sCount; i++ )
 | 
						|
    {
 | 
						|
        if( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getCls( i ) == 0.0F )
 | 
						|
        {
 | 
						|
            numNeg++;
 | 
						|
            if( predict( i ) )
 | 
						|
                numFalse++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    float falseAlarm = ((float) numFalse) / ((float) numNeg);
 | 
						|
 | 
						|
    cout << "|"; cout.width(4); cout << right << weak->total;
 | 
						|
    cout << "|"; cout.width(9); cout << right << hitRate;
 | 
						|
    cout << "|"; cout.width(9); cout << right << falseAlarm;
 | 
						|
    cout << "|" << endl;
 | 
						|
    cout << "+----+---------+---------+" << endl;
 | 
						|
 | 
						|
    return falseAlarm <= maxFalseAlarm;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoost::write( FileStorage &fs, const Mat& featureMap ) const
 | 
						|
{
 | 
						|
//    char cmnt[30];
 | 
						|
    CvCascadeBoostTree* weakTree;
 | 
						|
    fs << CC_WEAK_COUNT << weak->total;
 | 
						|
    fs << CC_STAGE_THRESHOLD << threshold;
 | 
						|
    fs << CC_WEAK_CLASSIFIERS << "[";
 | 
						|
    for( int wi = 0; wi < weak->total; wi++)
 | 
						|
    {
 | 
						|
        /*sprintf( cmnt, "tree %i", wi );
 | 
						|
        cvWriteComment( fs, cmnt, 0 );*/
 | 
						|
        weakTree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
 | 
						|
        weakTree->write( fs, featureMap );
 | 
						|
    }
 | 
						|
    fs << "]";
 | 
						|
}
 | 
						|
 | 
						|
bool CvCascadeBoost::read( const FileNode &node,
 | 
						|
                           const CvFeatureEvaluator* _featureEvaluator,
 | 
						|
                           const CvCascadeBoostParams& _params )
 | 
						|
{
 | 
						|
    CvMemStorage* storage;
 | 
						|
    clear();
 | 
						|
    data = new CvCascadeBoostTrainData( _featureEvaluator, _params );
 | 
						|
    set_params( _params );
 | 
						|
 | 
						|
    node[CC_STAGE_THRESHOLD] >> threshold;
 | 
						|
    FileNode rnode = node[CC_WEAK_CLASSIFIERS]; 
 | 
						|
 | 
						|
    storage = cvCreateMemStorage();
 | 
						|
    weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage );
 | 
						|
    for( FileNodeIterator it = rnode.begin(); it != rnode.end(); it++ )
 | 
						|
    {
 | 
						|
        CvCascadeBoostTree* tree = new CvCascadeBoostTree();
 | 
						|
        tree->read( *it, this, data );
 | 
						|
        cvSeqPush( weak, &tree );
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void CvCascadeBoost::markUsedFeaturesInMap( Mat& featureMap )
 | 
						|
{
 | 
						|
    for( int wi = 0; wi < weak->total; wi++ )
 | 
						|
    {
 | 
						|
        CvCascadeBoostTree* weakTree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
 | 
						|
        weakTree->markFeaturesInMap( featureMap );
 | 
						|
    }
 | 
						|
}
 |