1bd18836d7
Previously, there's no way to the user see the found corners, i've changed that. In a cout, are write that: "average reprojection err = " But it isn't a "reprojection error" at all, it is a mean of each EPIPOLAR error, wich occur when the product x' * F * x is not equal to zero. (x and x' are the same points in the right and left scene) (the RMS that explain the average absolute reprojection error is given by the return of the stereoCalibrate() function) At least, i think it's interesting to initialize the camera matrices before. Thank you all for this amazing code. Apologize my weak english.
405 lines
14 KiB
C++
405 lines
14 KiB
C++
/* This is sample from the OpenCV book. The copyright notice is below */
|
|
|
|
/* *************** License:**************************
|
|
Oct. 3, 2008
|
|
Right to use this code in any way you want without warranty, support or any guarantee of it working.
|
|
|
|
BOOK: It would be nice if you cited it:
|
|
Learning OpenCV: Computer Vision with the OpenCV Library
|
|
by Gary Bradski and Adrian Kaehler
|
|
Published by O'Reilly Media, October 3, 2008
|
|
|
|
AVAILABLE AT:
|
|
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
|
|
Or: http://oreilly.com/catalog/9780596516130/
|
|
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130
|
|
|
|
OPENCV WEBSITES:
|
|
Homepage: http://opencv.org
|
|
Online docs: http://docs.opencv.org
|
|
Q&A forum: http://answers.opencv.org
|
|
Issue tracker: http://code.opencv.org
|
|
GitHub: https://github.com/Itseez/opencv/
|
|
************************************************** */
|
|
|
|
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
static int print_help()
|
|
{
|
|
cout <<
|
|
" Given a list of chessboard images, the number of corners (nx, ny)\n"
|
|
" on the chessboards, and a flag: useCalibrated for \n"
|
|
" calibrated (0) or\n"
|
|
" uncalibrated \n"
|
|
" (1: use cvStereoCalibrate(), 2: compute fundamental\n"
|
|
" matrix separately) stereo. \n"
|
|
" Calibrate the cameras and display the\n"
|
|
" rectified results along with the computed disparity images. \n" << endl;
|
|
cout << "Usage:\n ./stereo_calib -w board_width -h board_height [-nr /*dot not view results*/] <image list XML/YML file>\n" << endl;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
StereoCalib(const vector<string>& imagelist, Size boardSize,bool displayCorners = false, bool useCalibrated=true, bool showRectified=true)
|
|
{
|
|
if( imagelist.size() % 2 != 0 )
|
|
{
|
|
cout << "Error: the image list contains odd (non-even) number of elements\n";
|
|
return;
|
|
}
|
|
|
|
const int maxScale = 2;
|
|
const float squareSize = 1.f; // Set this to your actual square size
|
|
// ARRAY AND VECTOR STORAGE:
|
|
|
|
vector<vector<Point2f> > imagePoints[2];
|
|
vector<vector<Point3f> > objectPoints;
|
|
Size imageSize;
|
|
|
|
int i, j, k, nimages = (int)imagelist.size()/2;
|
|
|
|
imagePoints[0].resize(nimages);
|
|
imagePoints[1].resize(nimages);
|
|
vector<string> goodImageList;
|
|
|
|
for( i = j = 0; i < nimages; i++ )
|
|
{
|
|
for( k = 0; k < 2; k++ )
|
|
{
|
|
const string& filename = imagelist[i*2+k];
|
|
Mat img = imread(filename, 0);
|
|
if(img.empty())
|
|
break;
|
|
if( imageSize == Size() )
|
|
imageSize = img.size();
|
|
else if( img.size() != imageSize )
|
|
{
|
|
cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
|
|
break;
|
|
}
|
|
bool found = false;
|
|
vector<Point2f>& corners = imagePoints[k][j];
|
|
for( int scale = 1; scale <= maxScale; scale++ )
|
|
{
|
|
Mat timg;
|
|
if( scale == 1 )
|
|
timg = img;
|
|
else
|
|
resize(img, timg, Size(), scale, scale);
|
|
found = findChessboardCorners(timg, boardSize, corners,
|
|
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
|
|
if( found )
|
|
{
|
|
if( scale > 1 )
|
|
{
|
|
Mat cornersMat(corners);
|
|
cornersMat *= 1./scale;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( displayCorners )
|
|
{
|
|
cout << filename << endl;
|
|
Mat cimg, cimg1;
|
|
cvtColor(img, cimg, COLOR_GRAY2BGR);
|
|
drawChessboardCorners(cimg, boardSize, corners, found);
|
|
double sf = 640./MAX(img.rows, img.cols);
|
|
resize(cimg, cimg1, Size(), sf, sf);
|
|
imshow("corners", cimg1);
|
|
char c = (char)waitKey(500);
|
|
if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
|
|
exit(-1);
|
|
}
|
|
else
|
|
putchar('.');
|
|
if( !found )
|
|
break;
|
|
cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
|
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
|
|
30, 0.01));
|
|
}
|
|
if( k == 2 )
|
|
{
|
|
goodImageList.push_back(imagelist[i*2]);
|
|
goodImageList.push_back(imagelist[i*2+1]);
|
|
j++;
|
|
}
|
|
}
|
|
cout << j << " pairs have been successfully detected.\n";
|
|
nimages = j;
|
|
if( nimages < 2 )
|
|
{
|
|
cout << "Error: too little pairs to run the calibration\n";
|
|
return;
|
|
}
|
|
|
|
imagePoints[0].resize(nimages);
|
|
imagePoints[1].resize(nimages);
|
|
objectPoints.resize(nimages);
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
{
|
|
for( j = 0; j < boardSize.height; j++ )
|
|
for( k = 0; k < boardSize.width; k++ )
|
|
objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
|
|
}
|
|
|
|
cout << "Running stereo calibration ...\n";
|
|
|
|
Mat cameraMatrix[2], distCoeffs[2];
|
|
cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
|
|
cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
|
|
Mat R, T, E, F;
|
|
|
|
double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
|
|
cameraMatrix[0], distCoeffs[0],
|
|
cameraMatrix[1], distCoeffs[1],
|
|
imageSize, R, T, E, F,
|
|
CALIB_FIX_ASPECT_RATIO +
|
|
CALIB_ZERO_TANGENT_DIST +
|
|
CALIB_USE_INTRINSIC_GUESS +
|
|
CALIB_SAME_FOCAL_LENGTH +
|
|
CALIB_RATIONAL_MODEL +
|
|
CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
|
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
|
|
cout << "done with RMS error=" << rms << endl;
|
|
|
|
// CALIBRATION QUALITY CHECK
|
|
// because the output fundamental matrix implicitly
|
|
// includes all the output information,
|
|
// we can check the quality of calibration using the
|
|
// epipolar geometry constraint: m2^t*F*m1=0
|
|
double err = 0;
|
|
int npoints = 0;
|
|
vector<Vec3f> lines[2];
|
|
for( i = 0; i < nimages; i++ )
|
|
{
|
|
int npt = (int)imagePoints[0][i].size();
|
|
Mat imgpt[2];
|
|
for( k = 0; k < 2; k++ )
|
|
{
|
|
imgpt[k] = Mat(imagePoints[k][i]);
|
|
undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
|
|
computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
|
|
}
|
|
for( j = 0; j < npt; j++ )
|
|
{
|
|
double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
|
|
imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
|
|
fabs(imagePoints[1][i][j].x*lines[0][j][0] +
|
|
imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
|
|
err += errij;
|
|
}
|
|
npoints += npt;
|
|
}
|
|
cout << "average epipolar err = " << err/npoints << endl;
|
|
|
|
// save intrinsic parameters
|
|
FileStorage fs("../data/intrinsics.yml", FileStorage::WRITE);
|
|
if( fs.isOpened() )
|
|
{
|
|
fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
|
|
"M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
|
|
fs.release();
|
|
}
|
|
else
|
|
cout << "Error: can not save the intrinsic parameters\n";
|
|
|
|
Mat R1, R2, P1, P2, Q;
|
|
Rect validRoi[2];
|
|
|
|
stereoRectify(cameraMatrix[0], distCoeffs[0],
|
|
cameraMatrix[1], distCoeffs[1],
|
|
imageSize, R, T, R1, R2, P1, P2, Q,
|
|
CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
|
|
|
|
fs.open("extrinsics.yml", FileStorage::WRITE);
|
|
if( fs.isOpened() )
|
|
{
|
|
fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
|
|
fs.release();
|
|
}
|
|
else
|
|
cout << "Error: can not save the extrinsic parameters\n";
|
|
|
|
// OpenCV can handle left-right
|
|
// or up-down camera arrangements
|
|
bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
|
|
|
|
// COMPUTE AND DISPLAY RECTIFICATION
|
|
if( !showRectified )
|
|
return;
|
|
|
|
Mat rmap[2][2];
|
|
// IF BY CALIBRATED (BOUGUET'S METHOD)
|
|
if( useCalibrated )
|
|
{
|
|
// we already computed everything
|
|
}
|
|
// OR ELSE HARTLEY'S METHOD
|
|
else
|
|
// use intrinsic parameters of each camera, but
|
|
// compute the rectification transformation directly
|
|
// from the fundamental matrix
|
|
{
|
|
vector<Point2f> allimgpt[2];
|
|
for( k = 0; k < 2; k++ )
|
|
{
|
|
for( i = 0; i < nimages; i++ )
|
|
std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
|
|
}
|
|
F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
|
|
Mat H1, H2;
|
|
stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
|
|
|
|
R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
|
|
R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
|
|
P1 = cameraMatrix[0];
|
|
P2 = cameraMatrix[1];
|
|
}
|
|
|
|
//Precompute maps for cv::remap()
|
|
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
|
|
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
|
|
|
|
Mat canvas;
|
|
double sf;
|
|
int w, h;
|
|
if( !isVerticalStereo )
|
|
{
|
|
sf = 600./MAX(imageSize.width, imageSize.height);
|
|
w = cvRound(imageSize.width*sf);
|
|
h = cvRound(imageSize.height*sf);
|
|
canvas.create(h, w*2, CV_8UC3);
|
|
}
|
|
else
|
|
{
|
|
sf = 300./MAX(imageSize.width, imageSize.height);
|
|
w = cvRound(imageSize.width*sf);
|
|
h = cvRound(imageSize.height*sf);
|
|
canvas.create(h*2, w, CV_8UC3);
|
|
}
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
{
|
|
for( k = 0; k < 2; k++ )
|
|
{
|
|
Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
|
|
remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
|
|
cvtColor(rimg, cimg, COLOR_GRAY2BGR);
|
|
Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
|
|
resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
|
|
if( useCalibrated )
|
|
{
|
|
Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
|
|
cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
|
|
rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
|
|
}
|
|
}
|
|
|
|
if( !isVerticalStereo )
|
|
for( j = 0; j < canvas.rows; j += 16 )
|
|
line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
|
|
else
|
|
for( j = 0; j < canvas.cols; j += 16 )
|
|
line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
|
|
imshow("rectified", canvas);
|
|
char c = (char)waitKey();
|
|
if( c == 27 || c == 'q' || c == 'Q' )
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static bool readStringList( const string& filename, vector<string>& l )
|
|
{
|
|
l.resize(0);
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
if( !fs.isOpened() )
|
|
return false;
|
|
FileNode n = fs.getFirstTopLevelNode();
|
|
if( n.type() != FileNode::SEQ )
|
|
return false;
|
|
FileNodeIterator it = n.begin(), it_end = n.end();
|
|
for( ; it != it_end; ++it )
|
|
l.push_back((string)*it);
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
Size boardSize;
|
|
string imagelistfn;
|
|
bool showRectified = true;
|
|
|
|
for( int i = 1; i < argc; i++ )
|
|
{
|
|
if( string(argv[i]) == "-w" )
|
|
{
|
|
if( sscanf(argv[++i], "%d", &boardSize.width) != 1 || boardSize.width <= 0 )
|
|
{
|
|
cout << "invalid board width" << endl;
|
|
return print_help();
|
|
}
|
|
}
|
|
else if( string(argv[i]) == "-h" )
|
|
{
|
|
if( sscanf(argv[++i], "%d", &boardSize.height) != 1 || boardSize.height <= 0 )
|
|
{
|
|
cout << "invalid board height" << endl;
|
|
return print_help();
|
|
}
|
|
}
|
|
else if( string(argv[i]) == "-nr" )
|
|
showRectified = false;
|
|
else if( string(argv[i]) == "--help" )
|
|
return print_help();
|
|
else if( argv[i][0] == '-' )
|
|
{
|
|
cout << "invalid option " << argv[i] << endl;
|
|
return 0;
|
|
}
|
|
else
|
|
imagelistfn = argv[i];
|
|
}
|
|
|
|
if( imagelistfn == "" )
|
|
{
|
|
imagelistfn = "../data/stereo_calib.xml";
|
|
boardSize = Size(9, 6);
|
|
}
|
|
else if( boardSize.width <= 0 || boardSize.height <= 0 )
|
|
{
|
|
cout << "if you specified XML file with chessboards, you should also specify the board width and height (-w and -h options)" << endl;
|
|
return 0;
|
|
}
|
|
|
|
vector<string> imagelist;
|
|
bool ok = readStringList(imagelistfn, imagelist);
|
|
if(!ok || imagelist.empty())
|
|
{
|
|
cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
|
|
return print_help();
|
|
}
|
|
|
|
StereoCalib(imagelist, boardSize,false, true, showRectified);
|
|
return 0;
|
|
}
|