277 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			277 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/objdetect.hpp"
 | |
| #include "opencv2/highgui.hpp"
 | |
| #include "opencv2/imgproc.hpp"
 | |
| #include "opencv2/core/ocl.hpp"
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
 | |
|             "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
 | |
|             "It's most known use is for faces.\n"
 | |
|             "Usage:\n"
 | |
|             "./ufacedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
 | |
|                "   [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
 | |
|                "   [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
 | |
|                "   [--try-flip]\n"
 | |
|                "   [filename|camera_index]\n\n"
 | |
|             "see facedetect.cmd for one call:\n"
 | |
|             "./ufacedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
 | |
|             "During execution:\n\tHit any key to quit.\n"
 | |
|             "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
 | |
| }
 | |
| 
 | |
| void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
 | |
|                     CascadeClassifier& nestedCascade,
 | |
|                     double scale, bool tryflip );
 | |
| 
 | |
| string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
 | |
| string nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
 | |
| 
 | |
| int main( int argc, const char** argv )
 | |
| {
 | |
|     VideoCapture capture;
 | |
|     UMat frame, image;
 | |
|     Mat canvas;
 | |
|     const string scaleOpt = "--scale=";
 | |
|     size_t scaleOptLen = scaleOpt.length();
 | |
|     const string cascadeOpt = "--cascade=";
 | |
|     size_t cascadeOptLen = cascadeOpt.length();
 | |
|     const string nestedCascadeOpt = "--nested-cascade";
 | |
|     size_t nestedCascadeOptLen = nestedCascadeOpt.length();
 | |
|     const string tryFlipOpt = "--try-flip";
 | |
|     size_t tryFlipOptLen = tryFlipOpt.length();
 | |
|     String inputName;
 | |
|     bool tryflip = false;
 | |
| 
 | |
|     help();
 | |
| 
 | |
|     CascadeClassifier cascade, nestedCascade;
 | |
|     double scale = 1;
 | |
| 
 | |
|     for( int i = 1; i < argc; i++ )
 | |
|     {
 | |
|         cout << "Processing " << i << " " <<  argv[i] << endl;
 | |
|         if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
 | |
|         {
 | |
|             cascadeName.assign( argv[i] + cascadeOptLen );
 | |
|             cout << "  from which we have cascadeName= " << cascadeName << endl;
 | |
|         }
 | |
|         else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
 | |
|         {
 | |
|             if( argv[i][nestedCascadeOpt.length()] == '=' )
 | |
|                 nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
 | |
|             if( !nestedCascade.load( nestedCascadeName ) )
 | |
|                 cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
 | |
|         }
 | |
|         else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
 | |
|         {
 | |
|             if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) )
 | |
|                 scale = 1;
 | |
|             cout << " from which we read scale = " << scale << endl;
 | |
|         }
 | |
|         else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 )
 | |
|         {
 | |
|             tryflip = true;
 | |
|             cout << " will try to flip image horizontally to detect assymetric objects\n";
 | |
|         }
 | |
|         else if( argv[i][0] == '-' )
 | |
|         {
 | |
|             cerr << "WARNING: Unknown option " << argv[i] << endl;
 | |
|         }
 | |
|         else
 | |
|             inputName = argv[i];
 | |
|     }
 | |
| 
 | |
|     if( !cascade.load( cascadeName ) )
 | |
|     {
 | |
|         cerr << "ERROR: Could not load classifier cascade" << endl;
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     cout << "old cascade: " << (cascade.isOldFormatCascade() ? "TRUE" : "FALSE") << endl;
 | |
| 
 | |
|     if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
 | |
|     {
 | |
|         int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0';
 | |
|         if(!capture.open(c))
 | |
|             cout << "Capture from camera #" <<  c << " didn't work" << endl;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if( inputName.empty() )
 | |
|             inputName = "../data/lena.jpg";
 | |
|         image = imread( inputName, 1 ).getUMat(ACCESS_READ);
 | |
|         if( image.empty() )
 | |
|         {
 | |
|             if(!capture.open( inputName ))
 | |
|                 cout << "Could not read " << inputName << endl;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( capture.isOpened() )
 | |
|     {
 | |
|         cout << "Video capturing has been started ..." << endl;
 | |
|         for(;;)
 | |
|         {
 | |
|             capture >> frame;
 | |
|             if( frame.empty() )
 | |
|                 break;
 | |
| 
 | |
|             detectAndDraw( frame, canvas, cascade, nestedCascade, scale, tryflip );
 | |
| 
 | |
|             int c = waitKey(10);
 | |
|             if( c == 27 || c == 'q' || c == 'Q' )
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cout << "Detecting face(s) in " << inputName << endl;
 | |
|         if( !image.empty() )
 | |
|         {
 | |
|             detectAndDraw( image, canvas, cascade, nestedCascade, scale, tryflip );
 | |
|             waitKey(0);
 | |
|         }
 | |
|         else if( !inputName.empty() )
 | |
|         {
 | |
|             /* assume it is a text file containing the
 | |
|             list of the image filenames to be processed - one per line */
 | |
|             FILE* f = fopen( inputName.c_str(), "rt" );
 | |
|             if( f )
 | |
|             {
 | |
|                 char buf[1000+1];
 | |
|                 while( fgets( buf, 1000, f ) )
 | |
|                 {
 | |
|                     int len = (int)strlen(buf), c;
 | |
|                     while( len > 0 && isspace(buf[len-1]) )
 | |
|                         len--;
 | |
|                     buf[len] = '\0';
 | |
|                     cout << "file " << buf << endl;
 | |
|                     image = imread( buf, 1 ).getUMat(ACCESS_READ);
 | |
|                     if( !image.empty() )
 | |
|                     {
 | |
|                         detectAndDraw( image, canvas, cascade, nestedCascade, scale, tryflip );
 | |
|                         c = waitKey(0);
 | |
|                         if( c == 27 || c == 'q' || c == 'Q' )
 | |
|                             break;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         cerr << "Aw snap, couldn't read image " << buf << endl;
 | |
|                     }
 | |
|                 }
 | |
|                 fclose(f);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
 | |
|                     CascadeClassifier& nestedCascade,
 | |
|                     double scale, bool tryflip )
 | |
| {
 | |
|     double t = 0;
 | |
|     vector<Rect> faces, faces2;
 | |
|     const static Scalar colors[] =
 | |
|     {
 | |
|         Scalar(255,0,0),
 | |
|         Scalar(255,128,0),
 | |
|         Scalar(255,255,0),
 | |
|         Scalar(0,255,0),
 | |
|         Scalar(0,128,255),
 | |
|         Scalar(0,255,255),
 | |
|         Scalar(0,0,255),
 | |
|         Scalar(255,0,255)
 | |
|     };
 | |
|     static UMat gray, smallImg;
 | |
| 
 | |
|     t = (double)getTickCount();
 | |
| 
 | |
|     cvtColor( img, gray, COLOR_BGR2GRAY );
 | |
|     double fx = 1 / scale;
 | |
|     resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
 | |
|     equalizeHist( smallImg, smallImg );
 | |
| 
 | |
|     cascade.detectMultiScale( smallImg, faces,
 | |
|         1.1, 3, 0
 | |
|         //|CASCADE_FIND_BIGGEST_OBJECT
 | |
|         //|CASCADE_DO_ROUGH_SEARCH
 | |
|         |CASCADE_SCALE_IMAGE,
 | |
|         Size(30, 30) );
 | |
|     if( tryflip )
 | |
|     {
 | |
|         flip(smallImg, smallImg, 1);
 | |
|         cascade.detectMultiScale( smallImg, faces2,
 | |
|                                  1.1, 2, 0
 | |
|                                  //|CASCADE_FIND_BIGGEST_OBJECT
 | |
|                                  //|CASCADE_DO_ROUGH_SEARCH
 | |
|                                  |CASCADE_SCALE_IMAGE,
 | |
|                                  Size(30, 30) );
 | |
|         for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
 | |
|         {
 | |
|             faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
 | |
|         }
 | |
|     }
 | |
|     t = (double)getTickCount() - t;
 | |
|     img.copyTo(canvas);
 | |
| 
 | |
|     double fps = getTickFrequency()/t;
 | |
|     static double avgfps = 0;
 | |
|     static int nframes = 0;
 | |
|     nframes++;
 | |
|     double alpha = nframes > 50 ? 0.01 : 1./nframes;
 | |
|     avgfps = avgfps*(1-alpha) + fps*alpha;
 | |
| 
 | |
|     putText(canvas, format("OpenCL: %s, fps: %.1f", ocl::useOpenCL() ? "ON" : "OFF", avgfps), Point(50, 30),
 | |
|             FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0,255,0), 2);
 | |
| 
 | |
|     for ( size_t i = 0; i < faces.size(); i++ )
 | |
|     {
 | |
|         Rect r = faces[i];
 | |
|         vector<Rect> nestedObjects;
 | |
|         Point center;
 | |
|         Scalar color = colors[i%8];
 | |
|         int radius;
 | |
| 
 | |
|         double aspect_ratio = (double)r.width/r.height;
 | |
|         if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
 | |
|         {
 | |
|             center.x = cvRound((r.x + r.width*0.5)*scale);
 | |
|             center.y = cvRound((r.y + r.height*0.5)*scale);
 | |
|             radius = cvRound((r.width + r.height)*0.25*scale);
 | |
|             circle( canvas, center, radius, color, 3, 8, 0 );
 | |
|         }
 | |
|         else
 | |
|             rectangle( canvas, Point(cvRound(r.x*scale), cvRound(r.y*scale)),
 | |
|                        Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
 | |
|                        color, 3, 8, 0);
 | |
|         if( nestedCascade.empty() )
 | |
|             continue;
 | |
|         UMat smallImgROI = smallImg(r);
 | |
|         nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
 | |
|             1.1, 2, 0
 | |
|             //|CASCADE_FIND_BIGGEST_OBJECT
 | |
|             //|CASCADE_DO_ROUGH_SEARCH
 | |
|             //|CASCADE_DO_CANNY_PRUNING
 | |
|             |CASCADE_SCALE_IMAGE,
 | |
|             Size(30, 30) );
 | |
| 
 | |
|         for ( size_t j = 0; j < nestedObjects.size(); j++ )
 | |
|         {
 | |
|             Rect nr = nestedObjects[j];
 | |
|             center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
 | |
|             center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
 | |
|             radius = cvRound((nr.width + nr.height)*0.25*scale);
 | |
|             circle( canvas, center, radius, color, 3, 8, 0 );
 | |
|         }
 | |
|     }
 | |
|     imshow( "result", canvas );
 | |
| }
 | 
