1243 lines
39 KiB
C++
1243 lines
39 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <cstdio>
|
|
|
|
#include "cascadedetect.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
|
|
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
|
|
class CV_EXPORTS SimilarRects
|
|
{
|
|
public:
|
|
SimilarRects(double _eps) : eps(_eps) {}
|
|
inline bool operator()(const Rect& r1, const Rect& r2) const
|
|
{
|
|
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
|
|
return std::abs(r1.x - r2.x) <= delta &&
|
|
std::abs(r1.y - r2.y) <= delta &&
|
|
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
|
|
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
|
|
}
|
|
double eps;
|
|
};
|
|
|
|
|
|
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
|
|
{
|
|
if( groupThreshold <= 0 || rectList.empty() )
|
|
{
|
|
if( weights )
|
|
{
|
|
size_t i, sz = rectList.size();
|
|
weights->resize(sz);
|
|
for( i = 0; i < sz; i++ )
|
|
(*weights)[i] = 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
vector<int> labels;
|
|
int nclasses = partition(rectList, labels, SimilarRects(eps));
|
|
|
|
vector<Rect> rrects(nclasses);
|
|
vector<int> rweights(nclasses, 0);
|
|
vector<int> rejectLevels(nclasses, 0);
|
|
vector<double> rejectWeights(nclasses, DBL_MIN);
|
|
int i, j, nlabels = (int)labels.size();
|
|
for( i = 0; i < nlabels; i++ )
|
|
{
|
|
int cls = labels[i];
|
|
rrects[cls].x += rectList[i].x;
|
|
rrects[cls].y += rectList[i].y;
|
|
rrects[cls].width += rectList[i].width;
|
|
rrects[cls].height += rectList[i].height;
|
|
rweights[cls]++;
|
|
}
|
|
if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
|
|
{
|
|
for( i = 0; i < nlabels; i++ )
|
|
{
|
|
int cls = labels[i];
|
|
if( (*weights)[i] > rejectLevels[cls] )
|
|
{
|
|
rejectLevels[cls] = (*weights)[i];
|
|
rejectWeights[cls] = (*levelWeights)[i];
|
|
}
|
|
else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
|
|
rejectWeights[cls] = (*levelWeights)[i];
|
|
}
|
|
}
|
|
|
|
for( i = 0; i < nclasses; i++ )
|
|
{
|
|
Rect r = rrects[i];
|
|
float s = 1.f/rweights[i];
|
|
rrects[i] = Rect(saturate_cast<int>(r.x*s),
|
|
saturate_cast<int>(r.y*s),
|
|
saturate_cast<int>(r.width*s),
|
|
saturate_cast<int>(r.height*s));
|
|
}
|
|
|
|
rectList.clear();
|
|
if( weights )
|
|
weights->clear();
|
|
if( levelWeights )
|
|
levelWeights->clear();
|
|
|
|
for( i = 0; i < nclasses; i++ )
|
|
{
|
|
Rect r1 = rrects[i];
|
|
int n1 = levelWeights ? rejectLevels[i] : rweights[i];
|
|
double w1 = rejectWeights[i];
|
|
if( n1 <= groupThreshold )
|
|
continue;
|
|
// filter out small face rectangles inside large rectangles
|
|
for( j = 0; j < nclasses; j++ )
|
|
{
|
|
int n2 = rweights[j];
|
|
|
|
if( j == i || n2 <= groupThreshold )
|
|
continue;
|
|
Rect r2 = rrects[j];
|
|
|
|
int dx = saturate_cast<int>( r2.width * eps );
|
|
int dy = saturate_cast<int>( r2.height * eps );
|
|
|
|
if( i != j &&
|
|
r1.x >= r2.x - dx &&
|
|
r1.y >= r2.y - dy &&
|
|
r1.x + r1.width <= r2.x + r2.width + dx &&
|
|
r1.y + r1.height <= r2.y + r2.height + dy &&
|
|
(n2 > std::max(3, n1) || n1 < 3) )
|
|
break;
|
|
}
|
|
|
|
if( j == nclasses )
|
|
{
|
|
rectList.push_back(r1);
|
|
if( weights )
|
|
weights->push_back(n1);
|
|
if( levelWeights )
|
|
levelWeights->push_back(w1);
|
|
}
|
|
}
|
|
}
|
|
|
|
class MeanshiftGrouping
|
|
{
|
|
public:
|
|
MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,
|
|
const vector<double>& wV, double, int maxIter = 20)
|
|
{
|
|
densityKernel = densKer;
|
|
weightsV = wV;
|
|
positionsV = posV;
|
|
positionsCount = (int)posV.size();
|
|
meanshiftV.resize(positionsCount);
|
|
distanceV.resize(positionsCount);
|
|
iterMax = maxIter;
|
|
|
|
for (unsigned i = 0; i<positionsV.size(); i++)
|
|
{
|
|
meanshiftV[i] = getNewValue(positionsV[i]);
|
|
distanceV[i] = moveToMode(meanshiftV[i]);
|
|
meanshiftV[i] -= positionsV[i];
|
|
}
|
|
}
|
|
|
|
void getModes(vector<Point3d>& modesV, vector<double>& resWeightsV, const double eps)
|
|
{
|
|
for (size_t i=0; i <distanceV.size(); i++)
|
|
{
|
|
bool is_found = false;
|
|
for(size_t j=0; j<modesV.size(); j++)
|
|
{
|
|
if ( getDistance(distanceV[i], modesV[j]) < eps)
|
|
{
|
|
is_found=true;
|
|
break;
|
|
}
|
|
}
|
|
if (!is_found)
|
|
{
|
|
modesV.push_back(distanceV[i]);
|
|
}
|
|
}
|
|
|
|
resWeightsV.resize(modesV.size());
|
|
|
|
for (size_t i=0; i<modesV.size(); i++)
|
|
{
|
|
resWeightsV[i] = getResultWeight(modesV[i]);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
vector<Point3d> positionsV;
|
|
vector<double> weightsV;
|
|
|
|
Point3d densityKernel;
|
|
int positionsCount;
|
|
|
|
vector<Point3d> meanshiftV;
|
|
vector<Point3d> distanceV;
|
|
int iterMax;
|
|
double modeEps;
|
|
|
|
Point3d getNewValue(const Point3d& inPt) const
|
|
{
|
|
Point3d resPoint(.0);
|
|
Point3d ratPoint(.0);
|
|
for (size_t i=0; i<positionsV.size(); i++)
|
|
{
|
|
Point3d aPt= positionsV[i];
|
|
Point3d bPt = inPt;
|
|
Point3d sPt = densityKernel;
|
|
|
|
sPt.x *= exp(aPt.z);
|
|
sPt.y *= exp(aPt.z);
|
|
|
|
aPt.x /= sPt.x;
|
|
aPt.y /= sPt.y;
|
|
aPt.z /= sPt.z;
|
|
|
|
bPt.x /= sPt.x;
|
|
bPt.y /= sPt.y;
|
|
bPt.z /= sPt.z;
|
|
|
|
double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
|
|
|
|
resPoint += w*aPt;
|
|
|
|
ratPoint.x += w/sPt.x;
|
|
ratPoint.y += w/sPt.y;
|
|
ratPoint.z += w/sPt.z;
|
|
}
|
|
resPoint.x /= ratPoint.x;
|
|
resPoint.y /= ratPoint.y;
|
|
resPoint.z /= ratPoint.z;
|
|
return resPoint;
|
|
}
|
|
|
|
double getResultWeight(const Point3d& inPt) const
|
|
{
|
|
double sumW=0;
|
|
for (size_t i=0; i<positionsV.size(); i++)
|
|
{
|
|
Point3d aPt = positionsV[i];
|
|
Point3d sPt = densityKernel;
|
|
|
|
sPt.x *= exp(aPt.z);
|
|
sPt.y *= exp(aPt.z);
|
|
|
|
aPt -= inPt;
|
|
|
|
aPt.x /= sPt.x;
|
|
aPt.y /= sPt.y;
|
|
aPt.z /= sPt.z;
|
|
|
|
sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
|
|
}
|
|
return sumW;
|
|
}
|
|
|
|
Point3d moveToMode(Point3d aPt) const
|
|
{
|
|
Point3d bPt;
|
|
for (int i = 0; i<iterMax; i++)
|
|
{
|
|
bPt = aPt;
|
|
aPt = getNewValue(bPt);
|
|
if ( getDistance(aPt, bPt) <= modeEps )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return aPt;
|
|
}
|
|
|
|
double getDistance(Point3d p1, Point3d p2) const
|
|
{
|
|
Point3d ns = densityKernel;
|
|
ns.x *= exp(p2.z);
|
|
ns.y *= exp(p2.z);
|
|
p2 -= p1;
|
|
p2.x /= ns.x;
|
|
p2.y /= ns.y;
|
|
p2.z /= ns.z;
|
|
return p2.dot(p2);
|
|
}
|
|
};
|
|
//new grouping function with using meanshift
|
|
static void groupRectangles_meanshift(vector<Rect>& rectList, double detectThreshold, vector<double>* foundWeights,
|
|
vector<double>& scales, Size winDetSize)
|
|
{
|
|
int detectionCount = (int)rectList.size();
|
|
vector<Point3d> hits(detectionCount), resultHits;
|
|
vector<double> hitWeights(detectionCount), resultWeights;
|
|
Point2d hitCenter;
|
|
|
|
for (int i=0; i < detectionCount; i++)
|
|
{
|
|
hitWeights[i] = (*foundWeights)[i];
|
|
hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles
|
|
hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i]));
|
|
}
|
|
|
|
rectList.clear();
|
|
if (foundWeights)
|
|
foundWeights->clear();
|
|
|
|
double logZ = std::log(1.3);
|
|
Point3d smothing(8, 16, logZ);
|
|
|
|
MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100);
|
|
|
|
msGrouping.getModes(resultHits, resultWeights, 1);
|
|
|
|
for (unsigned i=0; i < resultHits.size(); ++i)
|
|
{
|
|
|
|
double scale = exp(resultHits[i].z);
|
|
hitCenter.x = resultHits[i].x;
|
|
hitCenter.y = resultHits[i].y;
|
|
Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) );
|
|
Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2),
|
|
int(s.width), int(s.height) );
|
|
|
|
if (resultWeights[i] > detectThreshold)
|
|
{
|
|
rectList.push_back(resultRect);
|
|
foundWeights->push_back(resultWeights[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
|
|
{
|
|
groupRectangles(rectList, groupThreshold, eps, 0, 0);
|
|
}
|
|
|
|
void groupRectangles(vector<Rect>& rectList, vector<int>& weights, int groupThreshold, double eps)
|
|
{
|
|
groupRectangles(rectList, groupThreshold, eps, &weights, 0);
|
|
}
|
|
//used for cascade detection algorithm for ROC-curve calculating
|
|
void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels, vector<double>& levelWeights, int groupThreshold, double eps)
|
|
{
|
|
groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights);
|
|
}
|
|
//can be used for HOG detection algorithm only
|
|
void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights,
|
|
vector<double>& foundScales, double detectThreshold, Size winDetSize)
|
|
{
|
|
groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize);
|
|
}
|
|
|
|
|
|
|
|
FeatureEvaluator::~FeatureEvaluator() {}
|
|
bool FeatureEvaluator::read(const FileNode&) {return true;}
|
|
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
|
|
int FeatureEvaluator::getFeatureType() const {return -1;}
|
|
bool FeatureEvaluator::setImage(const Mat&, Size) {return true;}
|
|
bool FeatureEvaluator::setWindow(Point) { return true; }
|
|
double FeatureEvaluator::calcOrd(int) const { return 0.; }
|
|
int FeatureEvaluator::calcCat(int) const { return 0; }
|
|
|
|
//---------------------------------------------- HaarEvaluator ---------------------------------------
|
|
|
|
bool HaarEvaluator::Feature :: read( const FileNode& node )
|
|
{
|
|
FileNode rnode = node[CC_RECTS];
|
|
FileNodeIterator it = rnode.begin(), it_end = rnode.end();
|
|
|
|
int ri;
|
|
for( ri = 0; ri < RECT_NUM; ri++ )
|
|
{
|
|
rect[ri].r = Rect();
|
|
rect[ri].weight = 0.f;
|
|
}
|
|
|
|
for(ri = 0; it != it_end; ++it, ri++)
|
|
{
|
|
FileNodeIterator it2 = (*it).begin();
|
|
it2 >> rect[ri].r.x >> rect[ri].r.y >>
|
|
rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight;
|
|
}
|
|
|
|
tilted = (int)node[CC_TILTED] != 0;
|
|
return true;
|
|
}
|
|
|
|
HaarEvaluator::HaarEvaluator()
|
|
{
|
|
features = new vector<Feature>();
|
|
}
|
|
HaarEvaluator::~HaarEvaluator()
|
|
{
|
|
}
|
|
|
|
bool HaarEvaluator::read(const FileNode& node)
|
|
{
|
|
features->resize(node.size());
|
|
featuresPtr = &(*features)[0];
|
|
FileNodeIterator it = node.begin(), it_end = node.end();
|
|
hasTiltedFeatures = false;
|
|
|
|
for(int i = 0; it != it_end; ++it, i++)
|
|
{
|
|
if(!featuresPtr[i].read(*it))
|
|
return false;
|
|
if( featuresPtr[i].tilted )
|
|
hasTiltedFeatures = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Ptr<FeatureEvaluator> HaarEvaluator::clone() const
|
|
{
|
|
HaarEvaluator* ret = new HaarEvaluator;
|
|
ret->origWinSize = origWinSize;
|
|
ret->features = features;
|
|
ret->featuresPtr = &(*ret->features)[0];
|
|
ret->hasTiltedFeatures = hasTiltedFeatures;
|
|
ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
|
|
ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
|
|
ret->normrect = normrect;
|
|
memcpy( ret->p, p, 4*sizeof(p[0]) );
|
|
memcpy( ret->pq, pq, 4*sizeof(pq[0]) );
|
|
ret->offset = offset;
|
|
ret->varianceNormFactor = varianceNormFactor;
|
|
return ret;
|
|
}
|
|
|
|
bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
|
|
{
|
|
int rn = image.rows+1, cn = image.cols+1;
|
|
origWinSize = _origWinSize;
|
|
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
|
|
|
|
if (image.cols < origWinSize.width || image.rows < origWinSize.height)
|
|
return false;
|
|
|
|
if( sum0.rows < rn || sum0.cols < cn )
|
|
{
|
|
sum0.create(rn, cn, CV_32S);
|
|
sqsum0.create(rn, cn, CV_64F);
|
|
if (hasTiltedFeatures)
|
|
tilted0.create( rn, cn, CV_32S);
|
|
}
|
|
sum = Mat(rn, cn, CV_32S, sum0.data);
|
|
sqsum = Mat(rn, cn, CV_64F, sqsum0.data);
|
|
|
|
if( hasTiltedFeatures )
|
|
{
|
|
tilted = Mat(rn, cn, CV_32S, tilted0.data);
|
|
integral(image, sum, sqsum, tilted);
|
|
}
|
|
else
|
|
integral(image, sum, sqsum);
|
|
const int* sdata = (const int*)sum.data;
|
|
const double* sqdata = (const double*)sqsum.data;
|
|
size_t sumStep = sum.step/sizeof(sdata[0]);
|
|
size_t sqsumStep = sqsum.step/sizeof(sqdata[0]);
|
|
|
|
CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
|
|
CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
|
|
|
|
size_t fi, nfeatures = features->size();
|
|
|
|
for( fi = 0; fi < nfeatures; fi++ )
|
|
featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
|
|
return true;
|
|
}
|
|
|
|
bool HaarEvaluator::setWindow( Point pt )
|
|
{
|
|
if( pt.x < 0 || pt.y < 0 ||
|
|
pt.x + origWinSize.width >= sum.cols ||
|
|
pt.y + origWinSize.height >= sum.rows )
|
|
return false;
|
|
|
|
size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x;
|
|
size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x;
|
|
int valsum = CALC_SUM(p, pOffset);
|
|
double valsqsum = CALC_SUM(pq, pqOffset);
|
|
|
|
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
|
|
if( nf > 0. )
|
|
nf = sqrt(nf);
|
|
else
|
|
nf = 1.;
|
|
varianceNormFactor = 1./nf;
|
|
offset = (int)pOffset;
|
|
|
|
return true;
|
|
}
|
|
|
|
//---------------------------------------------- LBPEvaluator -------------------------------------
|
|
bool LBPEvaluator::Feature :: read(const FileNode& node )
|
|
{
|
|
FileNode rnode = node[CC_RECT];
|
|
FileNodeIterator it = rnode.begin();
|
|
it >> rect.x >> rect.y >> rect.width >> rect.height;
|
|
return true;
|
|
}
|
|
|
|
LBPEvaluator::LBPEvaluator()
|
|
{
|
|
features = new vector<Feature>();
|
|
}
|
|
LBPEvaluator::~LBPEvaluator()
|
|
{
|
|
}
|
|
|
|
bool LBPEvaluator::read( const FileNode& node )
|
|
{
|
|
features->resize(node.size());
|
|
featuresPtr = &(*features)[0];
|
|
FileNodeIterator it = node.begin(), it_end = node.end();
|
|
for(int i = 0; it != it_end; ++it, i++)
|
|
{
|
|
if(!featuresPtr[i].read(*it))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Ptr<FeatureEvaluator> LBPEvaluator::clone() const
|
|
{
|
|
LBPEvaluator* ret = new LBPEvaluator;
|
|
ret->origWinSize = origWinSize;
|
|
ret->features = features;
|
|
ret->featuresPtr = &(*ret->features)[0];
|
|
ret->sum0 = sum0, ret->sum = sum;
|
|
ret->normrect = normrect;
|
|
ret->offset = offset;
|
|
return ret;
|
|
}
|
|
|
|
bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize )
|
|
{
|
|
int rn = image.rows+1, cn = image.cols+1;
|
|
origWinSize = _origWinSize;
|
|
|
|
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
|
|
return false;
|
|
|
|
if( sum0.rows < rn || sum0.cols < cn )
|
|
sum0.create(rn, cn, CV_32S);
|
|
sum = Mat(rn, cn, CV_32S, sum0.data);
|
|
integral(image, sum);
|
|
|
|
size_t fi, nfeatures = features->size();
|
|
|
|
for( fi = 0; fi < nfeatures; fi++ )
|
|
featuresPtr[fi].updatePtrs( sum );
|
|
return true;
|
|
}
|
|
|
|
bool LBPEvaluator::setWindow( Point pt )
|
|
{
|
|
if( pt.x < 0 || pt.y < 0 ||
|
|
pt.x + origWinSize.width >= sum.cols ||
|
|
pt.y + origWinSize.height >= sum.rows )
|
|
return false;
|
|
offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x;
|
|
return true;
|
|
}
|
|
|
|
//---------------------------------------------- HOGEvaluator ---------------------------------------
|
|
bool HOGEvaluator::Feature :: read( const FileNode& node )
|
|
{
|
|
FileNode rnode = node[CC_RECT];
|
|
FileNodeIterator it = rnode.begin();
|
|
it >> rect[0].x >> rect[0].y >> rect[0].width >> rect[0].height >> featComponent;
|
|
rect[1].x = rect[0].x + rect[0].width;
|
|
rect[1].y = rect[0].y;
|
|
rect[2].x = rect[0].x;
|
|
rect[2].y = rect[0].y + rect[0].height;
|
|
rect[3].x = rect[0].x + rect[0].width;
|
|
rect[3].y = rect[0].y + rect[0].height;
|
|
rect[1].width = rect[2].width = rect[3].width = rect[0].width;
|
|
rect[1].height = rect[2].height = rect[3].height = rect[0].height;
|
|
return true;
|
|
}
|
|
|
|
HOGEvaluator::HOGEvaluator()
|
|
{
|
|
features = new vector<Feature>();
|
|
}
|
|
|
|
HOGEvaluator::~HOGEvaluator()
|
|
{
|
|
}
|
|
|
|
bool HOGEvaluator::read( const FileNode& node )
|
|
{
|
|
features->resize(node.size());
|
|
featuresPtr = &(*features)[0];
|
|
FileNodeIterator it = node.begin(), it_end = node.end();
|
|
for(int i = 0; it != it_end; ++it, i++)
|
|
{
|
|
if(!featuresPtr[i].read(*it))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Ptr<FeatureEvaluator> HOGEvaluator::clone() const
|
|
{
|
|
HOGEvaluator* ret = new HOGEvaluator;
|
|
ret->origWinSize = origWinSize;
|
|
ret->features = features;
|
|
ret->featuresPtr = &(*ret->features)[0];
|
|
ret->offset = offset;
|
|
ret->hist = hist;
|
|
ret->normSum = normSum;
|
|
return ret;
|
|
}
|
|
|
|
bool HOGEvaluator::setImage( const Mat& image, Size winSize )
|
|
{
|
|
int rows = image.rows + 1;
|
|
int cols = image.cols + 1;
|
|
origWinSize = winSize;
|
|
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
|
|
return false;
|
|
hist.clear();
|
|
for( int bin = 0; bin < Feature::BIN_NUM; bin++ )
|
|
{
|
|
hist.push_back( Mat(rows, cols, CV_32FC1) );
|
|
}
|
|
normSum.create( rows, cols, CV_32FC1 );
|
|
|
|
integralHistogram( image, hist, normSum, Feature::BIN_NUM );
|
|
|
|
size_t featIdx, featCount = features->size();
|
|
|
|
for( featIdx = 0; featIdx < featCount; featIdx++ )
|
|
{
|
|
featuresPtr[featIdx].updatePtrs( hist, normSum );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HOGEvaluator::setWindow(Point pt)
|
|
{
|
|
if( pt.x < 0 || pt.y < 0 ||
|
|
pt.x + origWinSize.width >= hist[0].cols-2 ||
|
|
pt.y + origWinSize.height >= hist[0].rows-2 )
|
|
return false;
|
|
offset = pt.y * ((int)hist[0].step/sizeof(float)) + pt.x;
|
|
return true;
|
|
}
|
|
|
|
void HOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const
|
|
{
|
|
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
|
|
int x, y, binIdx;
|
|
|
|
Size gradSize(img.size());
|
|
Size histSize(histogram[0].size());
|
|
Mat grad(gradSize, CV_32F);
|
|
Mat qangle(gradSize, CV_8U);
|
|
|
|
AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
|
|
int* xmap = (int*)mapbuf + 1;
|
|
int* ymap = xmap + gradSize.width + 2;
|
|
|
|
const int borderType = (int)BORDER_REPLICATE;
|
|
|
|
for( x = -1; x < gradSize.width + 1; x++ )
|
|
xmap[x] = borderInterpolate(x, gradSize.width, borderType);
|
|
for( y = -1; y < gradSize.height + 1; y++ )
|
|
ymap[y] = borderInterpolate(y, gradSize.height, borderType);
|
|
|
|
int width = gradSize.width;
|
|
AutoBuffer<float> _dbuf(width*4);
|
|
float* dbuf = _dbuf;
|
|
Mat Dx(1, width, CV_32F, dbuf);
|
|
Mat Dy(1, width, CV_32F, dbuf + width);
|
|
Mat Mag(1, width, CV_32F, dbuf + width*2);
|
|
Mat Angle(1, width, CV_32F, dbuf + width*3);
|
|
|
|
float angleScale = (float)(nbins/CV_PI);
|
|
|
|
for( y = 0; y < gradSize.height; y++ )
|
|
{
|
|
const uchar* currPtr = img.data + img.step*ymap[y];
|
|
const uchar* prevPtr = img.data + img.step*ymap[y-1];
|
|
const uchar* nextPtr = img.data + img.step*ymap[y+1];
|
|
float* gradPtr = (float*)grad.ptr(y);
|
|
uchar* qanglePtr = (uchar*)qangle.ptr(y);
|
|
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
|
|
dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
|
|
}
|
|
cartToPolar( Dx, Dy, Mag, Angle, false );
|
|
for( x = 0; x < width; x++ )
|
|
{
|
|
float mag = dbuf[x+width*2];
|
|
float angle = dbuf[x+width*3];
|
|
angle = angle*angleScale - 0.5f;
|
|
int bidx = cvFloor(angle);
|
|
angle -= bidx;
|
|
if( bidx < 0 )
|
|
bidx += nbins;
|
|
else if( bidx >= nbins )
|
|
bidx -= nbins;
|
|
|
|
qanglePtr[x] = (uchar)bidx;
|
|
gradPtr[x] = mag;
|
|
}
|
|
}
|
|
integral(grad, norm, grad.depth());
|
|
|
|
float* histBuf;
|
|
const float* magBuf;
|
|
const uchar* binsBuf;
|
|
|
|
int binsStep = (int)( qangle.step / sizeof(uchar) );
|
|
int histStep = (int)( histogram[0].step / sizeof(float) );
|
|
int magStep = (int)( grad.step / sizeof(float) );
|
|
for( binIdx = 0; binIdx < nbins; binIdx++ )
|
|
{
|
|
histBuf = (float*)histogram[binIdx].data;
|
|
magBuf = (const float*)grad.data;
|
|
binsBuf = (const uchar*)qangle.data;
|
|
|
|
memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
|
|
histBuf += histStep + 1;
|
|
for( y = 0; y < qangle.rows; y++ )
|
|
{
|
|
histBuf[-1] = 0.f;
|
|
float strSum = 0.f;
|
|
for( x = 0; x < qangle.cols; x++ )
|
|
{
|
|
if( binsBuf[x] == binIdx )
|
|
strSum += magBuf[x];
|
|
histBuf[x] = histBuf[-histStep + x] + strSum;
|
|
}
|
|
histBuf += histStep;
|
|
binsBuf += binsStep;
|
|
magBuf += magStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ptr<FeatureEvaluator> FeatureEvaluator::create( int featureType )
|
|
{
|
|
return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) :
|
|
featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) :
|
|
featureType == HOG ? Ptr<FeatureEvaluator>(new HOGEvaluator) :
|
|
Ptr<FeatureEvaluator>();
|
|
}
|
|
|
|
//---------------------------------------- Classifier Cascade --------------------------------------------
|
|
|
|
CascadeClassifier::CascadeClassifier()
|
|
{
|
|
}
|
|
|
|
CascadeClassifier::CascadeClassifier(const string& filename)
|
|
{
|
|
load(filename);
|
|
}
|
|
|
|
CascadeClassifier::~CascadeClassifier()
|
|
{
|
|
}
|
|
|
|
bool CascadeClassifier::empty() const
|
|
{
|
|
return oldCascade.empty() && data.stages.empty();
|
|
}
|
|
|
|
bool CascadeClassifier::load(const string& filename)
|
|
{
|
|
oldCascade.release();
|
|
data = Data();
|
|
featureEvaluator.release();
|
|
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
if( !fs.isOpened() )
|
|
return false;
|
|
|
|
if( read(fs.getFirstTopLevelNode()) )
|
|
return true;
|
|
|
|
fs.release();
|
|
|
|
oldCascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
|
|
return !oldCascade.empty();
|
|
}
|
|
|
|
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& featureEvaluator, Point pt, double& weight )
|
|
{
|
|
CV_Assert( oldCascade.empty() );
|
|
|
|
assert( data.featureType == FeatureEvaluator::HAAR ||
|
|
data.featureType == FeatureEvaluator::LBP ||
|
|
data.featureType == FeatureEvaluator::HOG );
|
|
|
|
if( !featureEvaluator->setWindow(pt) )
|
|
return -1;
|
|
if( data.isStumpBased )
|
|
{
|
|
if( data.featureType == FeatureEvaluator::HAAR )
|
|
return predictOrderedStump<HaarEvaluator>( *this, featureEvaluator, weight );
|
|
else if( data.featureType == FeatureEvaluator::LBP )
|
|
return predictCategoricalStump<LBPEvaluator>( *this, featureEvaluator, weight );
|
|
else if( data.featureType == FeatureEvaluator::HOG )
|
|
return predictOrderedStump<HOGEvaluator>( *this, featureEvaluator, weight );
|
|
else
|
|
return -2;
|
|
}
|
|
else
|
|
{
|
|
if( data.featureType == FeatureEvaluator::HAAR )
|
|
return predictOrdered<HaarEvaluator>( *this, featureEvaluator, weight );
|
|
else if( data.featureType == FeatureEvaluator::LBP )
|
|
return predictCategorical<LBPEvaluator>( *this, featureEvaluator, weight );
|
|
else if( data.featureType == FeatureEvaluator::HOG )
|
|
return predictOrdered<HOGEvaluator>( *this, featureEvaluator, weight );
|
|
else
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const Mat& image )
|
|
{
|
|
return empty() ? false : featureEvaluator->setImage(image, data.origWinSize);
|
|
}
|
|
|
|
void CascadeClassifier::setMaskGenerator(Ptr<MaskGenerator> _maskGenerator)
|
|
{
|
|
maskGenerator=_maskGenerator;
|
|
}
|
|
Ptr<CascadeClassifier::MaskGenerator> CascadeClassifier::getMaskGenerator()
|
|
{
|
|
return maskGenerator;
|
|
}
|
|
|
|
void CascadeClassifier::setFaceDetectionMaskGenerator()
|
|
{
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
setMaskGenerator(tegra::getCascadeClassifierMaskGenerator(*this));
|
|
#else
|
|
setMaskGenerator(Ptr<CascadeClassifier::MaskGenerator>());
|
|
#endif
|
|
}
|
|
|
|
struct CascadeClassifierInvoker
|
|
{
|
|
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor,
|
|
ConcurrentRectVector& _vec, vector<int>& _levels, vector<double>& _weights, bool outputLevels, const Mat& _mask)
|
|
{
|
|
classifier = &_cc;
|
|
processingRectSize = _sz1;
|
|
stripSize = _stripSize;
|
|
yStep = _yStep;
|
|
scalingFactor = _factor;
|
|
rectangles = &_vec;
|
|
rejectLevels = outputLevels ? &_levels : 0;
|
|
levelWeights = outputLevels ? &_weights : 0;
|
|
mask=_mask;
|
|
}
|
|
|
|
void operator()(const BlockedRange& range) const
|
|
{
|
|
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
|
|
|
|
Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
|
|
|
|
int y1 = range.begin() * stripSize;
|
|
int y2 = min(range.end() * stripSize, processingRectSize.height);
|
|
for( int y = y1; y < y2; y += yStep )
|
|
{
|
|
for( int x = 0; x < processingRectSize.width; x += yStep )
|
|
{
|
|
if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) {
|
|
continue;
|
|
}
|
|
|
|
double gypWeight;
|
|
int result = classifier->runAt(evaluator, Point(x, y), gypWeight);
|
|
if( rejectLevels )
|
|
{
|
|
if( result == 1 )
|
|
result = -(int)classifier->data.stages.size();
|
|
if( classifier->data.stages.size() + result < 4 )
|
|
{
|
|
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height));
|
|
rejectLevels->push_back(-result);
|
|
levelWeights->push_back(gypWeight);
|
|
}
|
|
}
|
|
else if( result > 0 )
|
|
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
|
|
winSize.width, winSize.height));
|
|
if( result == 0 )
|
|
x += yStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
CascadeClassifier* classifier;
|
|
ConcurrentRectVector* rectangles;
|
|
Size processingRectSize;
|
|
int stripSize, yStep;
|
|
double scalingFactor;
|
|
vector<int> *rejectLevels;
|
|
vector<double> *levelWeights;
|
|
Mat mask;
|
|
};
|
|
|
|
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
|
|
|
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
|
int stripSize, int yStep, double factor, vector<Rect>& candidates,
|
|
vector<int>& levels, vector<double>& weights, bool outputRejectLevels )
|
|
{
|
|
if( !featureEvaluator->setImage( image, data.origWinSize ) )
|
|
return false;
|
|
|
|
Mat currentMask;
|
|
if (!maskGenerator.empty()) {
|
|
currentMask=maskGenerator->generateMask(image);
|
|
}
|
|
|
|
ConcurrentRectVector concurrentCandidates;
|
|
vector<int> rejectLevels;
|
|
vector<double> levelWeights;
|
|
if( outputRejectLevels )
|
|
{
|
|
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
|
|
concurrentCandidates, rejectLevels, levelWeights, true, currentMask));
|
|
levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
|
|
weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
|
|
}
|
|
else
|
|
{
|
|
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
|
|
concurrentCandidates, rejectLevels, levelWeights, false, currentMask));
|
|
}
|
|
candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() );
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CascadeClassifier::isOldFormatCascade() const
|
|
{
|
|
return !oldCascade.empty();
|
|
}
|
|
|
|
|
|
int CascadeClassifier::getFeatureType() const
|
|
{
|
|
return featureEvaluator->getFeatureType();
|
|
}
|
|
|
|
Size CascadeClassifier::getOriginalWindowSize() const
|
|
{
|
|
return data.origWinSize;
|
|
}
|
|
|
|
bool CascadeClassifier::setImage(const Mat& image)
|
|
{
|
|
return featureEvaluator->setImage(image, data.origWinSize);
|
|
}
|
|
|
|
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
|
|
vector<int>& rejectLevels,
|
|
vector<double>& levelWeights,
|
|
double scaleFactor, int minNeighbors,
|
|
int flags, Size minObjectSize, Size maxObjectSize,
|
|
bool outputRejectLevels )
|
|
{
|
|
const double GROUP_EPS = 0.2;
|
|
|
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
|
|
|
|
if( empty() )
|
|
return;
|
|
|
|
if( isOldFormatCascade() )
|
|
{
|
|
MemStorage storage(cvCreateMemStorage(0));
|
|
CvMat _image = image;
|
|
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
|
|
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
|
|
vector<CvAvgComp> vecAvgComp;
|
|
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
|
objects.resize(vecAvgComp.size());
|
|
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
|
|
return;
|
|
}
|
|
|
|
objects.clear();
|
|
|
|
if (!maskGenerator.empty()) {
|
|
maskGenerator->initializeMask(image);
|
|
}
|
|
|
|
|
|
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
|
|
maxObjectSize = image.size();
|
|
|
|
Mat grayImage = image;
|
|
if( grayImage.channels() > 1 )
|
|
{
|
|
Mat temp;
|
|
cvtColor(grayImage, temp, CV_BGR2GRAY);
|
|
grayImage = temp;
|
|
}
|
|
|
|
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
|
|
vector<Rect> candidates;
|
|
|
|
for( double factor = 1; ; factor *= scaleFactor )
|
|
{
|
|
Size originalWindowSize = getOriginalWindowSize();
|
|
|
|
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
|
|
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
|
|
Size processingRectSize( scaledImageSize.width - originalWindowSize.width + 1, scaledImageSize.height - originalWindowSize.height + 1 );
|
|
|
|
if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
|
|
break;
|
|
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
|
|
break;
|
|
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
|
|
continue;
|
|
|
|
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
|
|
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
|
|
|
|
int yStep;
|
|
if( getFeatureType() == cv::FeatureEvaluator::HOG )
|
|
{
|
|
yStep = 4;
|
|
}
|
|
else
|
|
{
|
|
yStep = factor > 2. ? 1 : 2;
|
|
}
|
|
|
|
int stripCount, stripSize;
|
|
|
|
#ifdef HAVE_TBB
|
|
const int PTS_PER_THREAD = 1000;
|
|
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
|
|
stripCount = std::min(std::max(stripCount, 1), 100);
|
|
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
|
|
#else
|
|
stripCount = 1;
|
|
stripSize = processingRectSize.height;
|
|
#endif
|
|
|
|
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
|
|
rejectLevels, levelWeights, outputRejectLevels ) )
|
|
break;
|
|
}
|
|
|
|
|
|
objects.resize(candidates.size());
|
|
std::copy(candidates.begin(), candidates.end(), objects.begin());
|
|
|
|
if( outputRejectLevels )
|
|
{
|
|
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
|
|
}
|
|
else
|
|
{
|
|
groupRectangles( objects, minNeighbors, GROUP_EPS );
|
|
}
|
|
}
|
|
|
|
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
|
|
double scaleFactor, int minNeighbors,
|
|
int flags, Size minObjectSize, Size maxObjectSize)
|
|
{
|
|
vector<int> fakeLevels;
|
|
vector<double> fakeWeights;
|
|
detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
|
|
minNeighbors, flags, minObjectSize, maxObjectSize, false );
|
|
}
|
|
|
|
bool CascadeClassifier::Data::read(const FileNode &root)
|
|
{
|
|
static const float THRESHOLD_EPS = 1e-5f;
|
|
|
|
// load stage params
|
|
string stageTypeStr = (string)root[CC_STAGE_TYPE];
|
|
if( stageTypeStr == CC_BOOST )
|
|
stageType = BOOST;
|
|
else
|
|
return false;
|
|
|
|
string featureTypeStr = (string)root[CC_FEATURE_TYPE];
|
|
if( featureTypeStr == CC_HAAR )
|
|
featureType = FeatureEvaluator::HAAR;
|
|
else if( featureTypeStr == CC_LBP )
|
|
featureType = FeatureEvaluator::LBP;
|
|
else if( featureTypeStr == CC_HOG )
|
|
featureType = FeatureEvaluator::HOG;
|
|
|
|
else
|
|
return false;
|
|
|
|
origWinSize.width = (int)root[CC_WIDTH];
|
|
origWinSize.height = (int)root[CC_HEIGHT];
|
|
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
|
|
|
|
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
|
|
|
|
// load feature params
|
|
FileNode fn = root[CC_FEATURE_PARAMS];
|
|
if( fn.empty() )
|
|
return false;
|
|
|
|
ncategories = fn[CC_MAX_CAT_COUNT];
|
|
int subsetSize = (ncategories + 31)/32,
|
|
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
|
|
|
|
// load stages
|
|
fn = root[CC_STAGES];
|
|
if( fn.empty() )
|
|
return false;
|
|
|
|
stages.reserve(fn.size());
|
|
classifiers.clear();
|
|
nodes.clear();
|
|
|
|
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
|
|
|
for( int si = 0; it != it_end; si++, ++it )
|
|
{
|
|
FileNode fns = *it;
|
|
Stage stage;
|
|
stage.threshold = (float)fns[CC_STAGE_THRESHOLD] - THRESHOLD_EPS;
|
|
fns = fns[CC_WEAK_CLASSIFIERS];
|
|
if(fns.empty())
|
|
return false;
|
|
stage.ntrees = (int)fns.size();
|
|
stage.first = (int)classifiers.size();
|
|
stages.push_back(stage);
|
|
classifiers.reserve(stages[si].first + stages[si].ntrees);
|
|
|
|
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
|
|
for( ; it1 != it1_end; ++it1 ) // weak trees
|
|
{
|
|
FileNode fnw = *it1;
|
|
FileNode internalNodes = fnw[CC_INTERNAL_NODES];
|
|
FileNode leafValues = fnw[CC_LEAF_VALUES];
|
|
if( internalNodes.empty() || leafValues.empty() )
|
|
return false;
|
|
|
|
DTree tree;
|
|
tree.nodeCount = (int)internalNodes.size()/nodeStep;
|
|
classifiers.push_back(tree);
|
|
|
|
nodes.reserve(nodes.size() + tree.nodeCount);
|
|
leaves.reserve(leaves.size() + leafValues.size());
|
|
if( subsetSize > 0 )
|
|
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
|
|
|
|
FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();
|
|
|
|
for( ; internalNodesIter != internalNodesEnd; ) // nodes
|
|
{
|
|
DTreeNode node;
|
|
node.left = (int)*internalNodesIter; ++internalNodesIter;
|
|
node.right = (int)*internalNodesIter; ++internalNodesIter;
|
|
node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
|
|
if( subsetSize > 0 )
|
|
{
|
|
for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
|
|
subsets.push_back((int)*internalNodesIter);
|
|
node.threshold = 0.f;
|
|
}
|
|
else
|
|
{
|
|
node.threshold = (float)*internalNodesIter; ++internalNodesIter;
|
|
}
|
|
nodes.push_back(node);
|
|
}
|
|
|
|
internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();
|
|
|
|
for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
|
|
leaves.push_back((float)*internalNodesIter);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CascadeClassifier::read(const FileNode& root)
|
|
{
|
|
if( !data.read(root) )
|
|
return false;
|
|
|
|
// load features
|
|
featureEvaluator = FeatureEvaluator::create(data.featureType);
|
|
FileNode fn = root[CC_FEATURES];
|
|
if( fn.empty() )
|
|
return false;
|
|
|
|
return featureEvaluator->read(fn);
|
|
}
|
|
|
|
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
|
|
{ cvReleaseHaarClassifierCascade(&obj); }
|
|
|
|
} // namespace cv
|