383 lines
16 KiB
Plaintext
383 lines
16 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "opencv2/core/cuda/saturate_cast.hpp"
|
|
#include "opencv2/core/cuda/transform.hpp"
|
|
#include "opencv2/core/cuda/functional.hpp"
|
|
#include "opencv2/core/cuda/type_traits.hpp"
|
|
|
|
namespace cv { namespace gpu { namespace cuda
|
|
{
|
|
void writeScalar(const uchar*);
|
|
void writeScalar(const schar*);
|
|
void writeScalar(const ushort*);
|
|
void writeScalar(const short int*);
|
|
void writeScalar(const int*);
|
|
void writeScalar(const float*);
|
|
void writeScalar(const double*);
|
|
void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream);
|
|
void convert_gpu(PtrStepSzb, int, PtrStepSzb, int, double, double, cudaStream_t);
|
|
}}}
|
|
|
|
namespace cv { namespace gpu { namespace cuda
|
|
{
|
|
template <typename T> struct shift_and_sizeof;
|
|
template <> struct shift_and_sizeof<signed char> { enum { shift = 0 }; };
|
|
template <> struct shift_and_sizeof<unsigned char> { enum { shift = 0 }; };
|
|
template <> struct shift_and_sizeof<short> { enum { shift = 1 }; };
|
|
template <> struct shift_and_sizeof<unsigned short> { enum { shift = 1 }; };
|
|
template <> struct shift_and_sizeof<int> { enum { shift = 2 }; };
|
|
template <> struct shift_and_sizeof<float> { enum { shift = 2 }; };
|
|
template <> struct shift_and_sizeof<double> { enum { shift = 3 }; };
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////// CopyTo /////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T> void copyToWithMask(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream)
|
|
{
|
|
if (colorMask)
|
|
cv::gpu::cuda::transform((PtrStepSz<T>)src, (PtrStepSz<T>)dst, identity<T>(), SingleMask(mask), stream);
|
|
else
|
|
cv::gpu::cuda::transform((PtrStepSz<T>)src, (PtrStepSz<T>)dst, identity<T>(), SingleMaskChannels(mask, cn), stream);
|
|
}
|
|
|
|
void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream);
|
|
|
|
static func_t tab[] =
|
|
{
|
|
0,
|
|
copyToWithMask<unsigned char>,
|
|
copyToWithMask<unsigned short>,
|
|
0,
|
|
copyToWithMask<int>,
|
|
0,
|
|
0,
|
|
0,
|
|
copyToWithMask<double>
|
|
};
|
|
|
|
tab[elemSize1](src, dst, cn, mask, colorMask, stream);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////// SetTo //////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
__constant__ uchar scalar_8u[4];
|
|
__constant__ schar scalar_8s[4];
|
|
__constant__ ushort scalar_16u[4];
|
|
__constant__ short scalar_16s[4];
|
|
__constant__ int scalar_32s[4];
|
|
__constant__ float scalar_32f[4];
|
|
__constant__ double scalar_64f[4];
|
|
|
|
template <typename T> __device__ __forceinline__ T readScalar(int i);
|
|
template <> __device__ __forceinline__ uchar readScalar<uchar>(int i) {return scalar_8u[i];}
|
|
template <> __device__ __forceinline__ schar readScalar<schar>(int i) {return scalar_8s[i];}
|
|
template <> __device__ __forceinline__ ushort readScalar<ushort>(int i) {return scalar_16u[i];}
|
|
template <> __device__ __forceinline__ short readScalar<short>(int i) {return scalar_16s[i];}
|
|
template <> __device__ __forceinline__ int readScalar<int>(int i) {return scalar_32s[i];}
|
|
template <> __device__ __forceinline__ float readScalar<float>(int i) {return scalar_32f[i];}
|
|
template <> __device__ __forceinline__ double readScalar<double>(int i) {return scalar_64f[i];}
|
|
|
|
void writeScalar(const uchar* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_8u, vals, sizeof(uchar) * 4) );
|
|
}
|
|
void writeScalar(const schar* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_8s, vals, sizeof(schar) * 4) );
|
|
}
|
|
void writeScalar(const ushort* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_16u, vals, sizeof(ushort) * 4) );
|
|
}
|
|
void writeScalar(const short* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_16s, vals, sizeof(short) * 4) );
|
|
}
|
|
void writeScalar(const int* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_32s, vals, sizeof(int) * 4) );
|
|
}
|
|
void writeScalar(const float* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_32f, vals, sizeof(float) * 4) );
|
|
}
|
|
void writeScalar(const double* vals)
|
|
{
|
|
cvCudaSafeCall( cudaMemcpyToSymbol(scalar_64f, vals, sizeof(double) * 4) );
|
|
}
|
|
|
|
template<typename T>
|
|
__global__ void set_to_without_mask(T* mat, int cols, int rows, size_t step, int channels)
|
|
{
|
|
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if ((x < cols * channels ) && (y < rows))
|
|
{
|
|
size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
|
|
mat[idx] = readScalar<T>(x % channels);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
__global__ void set_to_with_mask(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
|
|
{
|
|
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if ((x < cols * channels ) && (y < rows))
|
|
if (mask[y * step_mask + x / channels] != 0)
|
|
{
|
|
size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
|
|
mat[idx] = readScalar<T>(x % channels);
|
|
}
|
|
}
|
|
template <typename T>
|
|
void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream)
|
|
{
|
|
writeScalar(scalar);
|
|
|
|
dim3 threadsPerBlock(32, 8, 1);
|
|
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
|
|
|
set_to_with_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, (uchar*)mask.data, mat.cols, mat.rows, mat.step, channels, mask.step);
|
|
cvCudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cvCudaSafeCall ( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
template void set_to_gpu<uchar >(PtrStepSzb mat, const uchar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<schar >(PtrStepSzb mat, const schar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<ushort>(PtrStepSzb mat, const ushort* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<short >(PtrStepSzb mat, const short* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<int >(PtrStepSzb mat, const int* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<float >(PtrStepSzb mat, const float* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<double>(PtrStepSzb mat, const double* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream)
|
|
{
|
|
writeScalar(scalar);
|
|
|
|
dim3 threadsPerBlock(32, 8, 1);
|
|
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
|
|
|
set_to_without_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, mat.cols, mat.rows, mat.step, channels);
|
|
cvCudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cvCudaSafeCall ( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
template void set_to_gpu<uchar >(PtrStepSzb mat, const uchar* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<schar >(PtrStepSzb mat, const schar* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<ushort>(PtrStepSzb mat, const ushort* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<short >(PtrStepSzb mat, const short* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<int >(PtrStepSzb mat, const int* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<float >(PtrStepSzb mat, const float* scalar, int channels, cudaStream_t stream);
|
|
template void set_to_gpu<double>(PtrStepSzb mat, const double* scalar, int channels, cudaStream_t stream);
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////// ConvertTo ////////////////////////////////
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T, typename D, typename S> struct Convertor : unary_function<T, D>
|
|
{
|
|
Convertor(S alpha_, S beta_) : alpha(alpha_), beta(beta_) {}
|
|
|
|
__device__ __forceinline__ D operator()(typename TypeTraits<T>::ParameterType src) const
|
|
{
|
|
return saturate_cast<D>(alpha * src + beta);
|
|
}
|
|
|
|
S alpha, beta;
|
|
};
|
|
|
|
namespace detail
|
|
{
|
|
template <size_t src_size, size_t dst_size, typename F> struct ConvertTraitsDispatcher : DefaultTransformFunctorTraits<F>
|
|
{
|
|
};
|
|
template <typename F> struct ConvertTraitsDispatcher<1, 1, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_shift = 8 };
|
|
};
|
|
template <typename F> struct ConvertTraitsDispatcher<1, 2, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_shift = 4 };
|
|
};
|
|
template <typename F> struct ConvertTraitsDispatcher<1, 4, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_block_dim_y = 8 };
|
|
enum { smart_shift = 4 };
|
|
};
|
|
|
|
template <typename F> struct ConvertTraitsDispatcher<2, 2, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_shift = 4 };
|
|
};
|
|
template <typename F> struct ConvertTraitsDispatcher<2, 4, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_shift = 2 };
|
|
};
|
|
|
|
template <typename F> struct ConvertTraitsDispatcher<4, 2, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_block_dim_y = 8 };
|
|
enum { smart_shift = 4 };
|
|
};
|
|
template <typename F> struct ConvertTraitsDispatcher<4, 4, F> : DefaultTransformFunctorTraits<F>
|
|
{
|
|
enum { smart_block_dim_y = 8 };
|
|
enum { smart_shift = 2 };
|
|
};
|
|
|
|
template <typename F> struct ConvertTraits : ConvertTraitsDispatcher<sizeof(typename F::argument_type), sizeof(typename F::result_type), F>
|
|
{
|
|
};
|
|
}
|
|
|
|
template <typename T, typename D, typename S> struct TransformFunctorTraits< Convertor<T, D, S> > : detail::ConvertTraits< Convertor<T, D, S> >
|
|
{
|
|
};
|
|
|
|
template<typename T, typename D, typename S>
|
|
void cvt_(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream)
|
|
{
|
|
cvCudaSafeCall( cudaSetDoubleForDevice(&alpha) );
|
|
cvCudaSafeCall( cudaSetDoubleForDevice(&beta) );
|
|
Convertor<T, D, S> op(static_cast<S>(alpha), static_cast<S>(beta));
|
|
cv::gpu::cuda::transform((PtrStepSz<T>)src, (PtrStepSz<D>)dst, op, WithOutMask(), stream);
|
|
}
|
|
|
|
#if defined __clang__
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wmissing-declarations"
|
|
#endif
|
|
|
|
void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream)
|
|
{
|
|
typedef void (*caller_t)(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream);
|
|
|
|
static const caller_t tab[7][7] =
|
|
{
|
|
{
|
|
cvt_<uchar, uchar, float>,
|
|
cvt_<uchar, schar, float>,
|
|
cvt_<uchar, ushort, float>,
|
|
cvt_<uchar, short, float>,
|
|
cvt_<uchar, int, float>,
|
|
cvt_<uchar, float, float>,
|
|
cvt_<uchar, double, double>
|
|
},
|
|
{
|
|
cvt_<schar, uchar, float>,
|
|
cvt_<schar, schar, float>,
|
|
cvt_<schar, ushort, float>,
|
|
cvt_<schar, short, float>,
|
|
cvt_<schar, int, float>,
|
|
cvt_<schar, float, float>,
|
|
cvt_<schar, double, double>
|
|
},
|
|
{
|
|
cvt_<ushort, uchar, float>,
|
|
cvt_<ushort, schar, float>,
|
|
cvt_<ushort, ushort, float>,
|
|
cvt_<ushort, short, float>,
|
|
cvt_<ushort, int, float>,
|
|
cvt_<ushort, float, float>,
|
|
cvt_<ushort, double, double>
|
|
},
|
|
{
|
|
cvt_<short, uchar, float>,
|
|
cvt_<short, schar, float>,
|
|
cvt_<short, ushort, float>,
|
|
cvt_<short, short, float>,
|
|
cvt_<short, int, float>,
|
|
cvt_<short, float, float>,
|
|
cvt_<short, double, double>
|
|
},
|
|
{
|
|
cvt_<int, uchar, float>,
|
|
cvt_<int, schar, float>,
|
|
cvt_<int, ushort, float>,
|
|
cvt_<int, short, float>,
|
|
cvt_<int, int, double>,
|
|
cvt_<int, float, double>,
|
|
cvt_<int, double, double>
|
|
},
|
|
{
|
|
cvt_<float, uchar, float>,
|
|
cvt_<float, schar, float>,
|
|
cvt_<float, ushort, float>,
|
|
cvt_<float, short, float>,
|
|
cvt_<float, int, float>,
|
|
cvt_<float, float, float>,
|
|
cvt_<float, double, double>
|
|
},
|
|
{
|
|
cvt_<double, uchar, double>,
|
|
cvt_<double, schar, double>,
|
|
cvt_<double, ushort, double>,
|
|
cvt_<double, short, double>,
|
|
cvt_<double, int, double>,
|
|
cvt_<double, float, double>,
|
|
cvt_<double, double, double>
|
|
}
|
|
};
|
|
|
|
caller_t func = tab[sdepth][ddepth];
|
|
func(src, dst, alpha, beta, stream);
|
|
}
|
|
|
|
#if defined __clang__
|
|
# pragma clang diagnostic pop
|
|
#endif
|
|
}}} // namespace cv { namespace gpu { namespace cuda
|