288 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dlaeda.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b24 = 1.;
 | |
| static doublereal c_b26 = 0.;
 | |
| 
 | |
| /* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, 
 | |
| 	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 
 | |
| 	integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, 
 | |
| 	doublereal *z__, doublereal *ztemp, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2, i__3;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     integer pow_ii(integer *, integer *);
 | |
|     double sqrt(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, k, mid, ptr;
 | |
|     extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *);
 | |
|     integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
 | |
|     extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, 
 | |
| 	     integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DLAEDA computes the Z vector corresponding to the merge step in the */
 | |
| /*  CURLVLth step of the merge process with TLVLS steps for the CURPBMth */
 | |
| /*  problem. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  N      (input) INTEGER */
 | |
| /*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 | |
| 
 | |
| /*  TLVLS  (input) INTEGER */
 | |
| /*         The total number of merging levels in the overall divide and */
 | |
| /*         conquer tree. */
 | |
| 
 | |
| /*  CURLVL (input) INTEGER */
 | |
| /*         The current level in the overall merge routine, */
 | |
| /*         0 <= curlvl <= tlvls. */
 | |
| 
 | |
| /*  CURPBM (input) INTEGER */
 | |
| /*         The current problem in the current level in the overall */
 | |
| /*         merge routine (counting from upper left to lower right). */
 | |
| 
 | |
| /*  PRMPTR (input) INTEGER array, dimension (N lg N) */
 | |
| /*         Contains a list of pointers which indicate where in PERM a */
 | |
| /*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
 | |
| /*         indicates the size of the permutation and incidentally the */
 | |
| /*         size of the full, non-deflated problem. */
 | |
| 
 | |
| /*  PERM   (input) INTEGER array, dimension (N lg N) */
 | |
| /*         Contains the permutations (from deflation and sorting) to be */
 | |
| /*         applied to each eigenblock. */
 | |
| 
 | |
| /*  GIVPTR (input) INTEGER array, dimension (N lg N) */
 | |
| /*         Contains a list of pointers which indicate where in GIVCOL a */
 | |
| /*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
 | |
| /*         indicates the number of Givens rotations. */
 | |
| 
 | |
| /*  GIVCOL (input) INTEGER array, dimension (2, N lg N) */
 | |
| /*         Each pair of numbers indicates a pair of columns to take place */
 | |
| /*         in a Givens rotation. */
 | |
| 
 | |
| /*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */
 | |
| /*         Each number indicates the S value to be used in the */
 | |
| /*         corresponding Givens rotation. */
 | |
| 
 | |
| /*  Q      (input) DOUBLE PRECISION array, dimension (N**2) */
 | |
| /*         Contains the square eigenblocks from previous levels, the */
 | |
| /*         starting positions for blocks are given by QPTR. */
 | |
| 
 | |
| /*  QPTR   (input) INTEGER array, dimension (N+2) */
 | |
| /*         Contains a list of pointers which indicate where in Q an */
 | |
| /*         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates */
 | |
| /*         the size of the block. */
 | |
| 
 | |
| /*  Z      (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*         On output this vector contains the updating vector (the last */
 | |
| /*         row of the first sub-eigenvector matrix and the first row of */
 | |
| /*         the second sub-eigenvector matrix). */
 | |
| 
 | |
| /*  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N) */
 | |
| 
 | |
| /*  INFO   (output) INTEGER */
 | |
| /*          = 0:  successful exit. */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Jeff Rutter, Computer Science Division, University of California */
 | |
| /*     at Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --ztemp;
 | |
|     --z__;
 | |
|     --qptr;
 | |
|     --q;
 | |
|     givnum -= 3;
 | |
|     givcol -= 3;
 | |
|     --givptr;
 | |
|     --perm;
 | |
|     --prmptr;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DLAEDA", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Determine location of first number in second half. */
 | |
| 
 | |
|     mid = *n / 2 + 1;
 | |
| 
 | |
| /*     Gather last/first rows of appropriate eigenblocks into center of Z */
 | |
| 
 | |
|     ptr = 1;
 | |
| 
 | |
| /*     Determine location of lowest level subproblem in the full storage */
 | |
| /*     scheme */
 | |
| 
 | |
|     i__1 = *curlvl - 1;
 | |
|     curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
 | |
| 
 | |
| /*     Determine size of these matrices.  We add HALF to the value of */
 | |
| /*     the SQRT in case the machine underestimates one of these square */
 | |
| /*     roots. */
 | |
| 
 | |
|     bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
 | |
|     bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + 
 | |
| 	    .5);
 | |
|     i__1 = mid - bsiz1 - 1;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	z__[k] = 0.;
 | |
| /* L10: */
 | |
|     }
 | |
|     dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
 | |
| 	    c__1);
 | |
|     dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
 | |
|     i__1 = *n;
 | |
|     for (k = mid + bsiz2; k <= i__1; ++k) {
 | |
| 	z__[k] = 0.;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Loop thru remaining levels 1 -> CURLVL applying the Givens */
 | |
| /*     rotations and permutation and then multiplying the center matrices */
 | |
| /*     against the current Z. */
 | |
| 
 | |
|     ptr = pow_ii(&c__2, tlvls) + 1;
 | |
|     i__1 = *curlvl - 1;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	i__2 = *curlvl - k;
 | |
| 	i__3 = *curlvl - k - 1;
 | |
| 	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 
 | |
| 		1;
 | |
| 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 | |
| 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 | |
| 	zptr1 = mid - psiz1;
 | |
| 
 | |
| /*       Apply Givens at CURR and CURR+1 */
 | |
| 
 | |
| 	i__2 = givptr[curr + 1] - 1;
 | |
| 	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
 | |
| 	    drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
 | |
| 		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
 | |
| 		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
 | |
| /* L30: */
 | |
| 	}
 | |
| 	i__2 = givptr[curr + 2] - 1;
 | |
| 	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
 | |
| 	    drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
 | |
| 		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 
 | |
| 		    1) + 1], &givnum[(i__ << 1) + 2]);
 | |
| /* L40: */
 | |
| 	}
 | |
| 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 | |
| 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 | |
| 	i__2 = psiz1 - 1;
 | |
| 	for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
 | |
| /* L50: */
 | |
| 	}
 | |
| 	i__2 = psiz2 - 1;
 | |
| 	for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 
 | |
| 		    1];
 | |
| /* L60: */
 | |
| 	}
 | |
| 
 | |
| /*        Multiply Blocks at CURR and CURR+1 */
 | |
| 
 | |
| /*        Determine size of these matrices.  We add HALF to the value of */
 | |
| /*        the SQRT in case the machine underestimates one of these */
 | |
| /*        square roots. */
 | |
| 
 | |
| 	bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + 
 | |
| 		.5);
 | |
| 	bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
 | |
| 		) + .5);
 | |
| 	if (bsiz1 > 0) {
 | |
| 	    dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
 | |
| 		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
 | |
| 	}
 | |
| 	i__2 = psiz1 - bsiz1;
 | |
| 	dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
 | |
| 	if (bsiz2 > 0) {
 | |
| 	    dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
 | |
| 		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
 | |
| 	}
 | |
| 	i__2 = psiz2 - bsiz2;
 | |
| 	dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
 | |
| 		c__1);
 | |
| 
 | |
| 	i__2 = *tlvls - k;
 | |
| 	ptr += pow_ii(&c__2, &i__2);
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DLAEDA */
 | |
| 
 | |
| } /* dlaeda_ */
 | 
