101 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  * @file SURF_FlannMatcher
 | |
|  * @brief SURF detector + descriptor + FLANN Matcher
 | |
|  * @author A. Huaman
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <iostream>
 | |
| #include "opencv2/core/core.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/nonfree/features2d.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| 
 | |
| void readme();
 | |
| 
 | |
| /**
 | |
|  * @function main
 | |
|  * @brief Main function
 | |
|  */
 | |
| int main( int argc, char** argv )
 | |
| {
 | |
|   if( argc != 3 )
 | |
|   { readme(); return -1; }
 | |
| 
 | |
|   Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
 | |
|   Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
 | |
| 
 | |
|   if( !img_1.data || !img_2.data )
 | |
|   { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
 | |
| 
 | |
|   //-- Step 1: Detect the keypoints using SURF Detector
 | |
|   int minHessian = 400;
 | |
| 
 | |
|   SurfFeatureDetector detector( minHessian );
 | |
| 
 | |
|   std::vector<KeyPoint> keypoints_1, keypoints_2;
 | |
| 
 | |
|   detector.detect( img_1, keypoints_1 );
 | |
|   detector.detect( img_2, keypoints_2 );
 | |
| 
 | |
|   //-- Step 2: Calculate descriptors (feature vectors)
 | |
|   SurfDescriptorExtractor extractor;
 | |
| 
 | |
|   Mat descriptors_1, descriptors_2;
 | |
| 
 | |
|   extractor.compute( img_1, keypoints_1, descriptors_1 );
 | |
|   extractor.compute( img_2, keypoints_2, descriptors_2 );
 | |
| 
 | |
|   //-- Step 3: Matching descriptor vectors using FLANN matcher
 | |
|   FlannBasedMatcher matcher;
 | |
|   std::vector< DMatch > matches;
 | |
|   matcher.match( descriptors_1, descriptors_2, matches );
 | |
| 
 | |
|   double max_dist = 0; double min_dist = 100;
 | |
| 
 | |
|   //-- Quick calculation of max and min distances between keypoints
 | |
|   for( int i = 0; i < descriptors_1.rows; i++ )
 | |
|   { double dist = matches[i].distance;
 | |
|     if( dist < min_dist ) min_dist = dist;
 | |
|     if( dist > max_dist ) max_dist = dist;
 | |
|   }
 | |
| 
 | |
|   printf("-- Max dist : %f \n", max_dist );
 | |
|   printf("-- Min dist : %f \n", min_dist );
 | |
| 
 | |
|   //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
 | |
|   //-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
 | |
|   //-- small)
 | |
|   //-- PS.- radiusMatch can also be used here.
 | |
|   std::vector< DMatch > good_matches;
 | |
| 
 | |
|   for( int i = 0; i < descriptors_1.rows; i++ )
 | |
|   { if( matches[i].distance <= max(2*min_dist, 0.02) )
 | |
|     { good_matches.push_back( matches[i]); }
 | |
|   }
 | |
| 
 | |
|   //-- Draw only "good" matches
 | |
|   Mat img_matches;
 | |
|   drawMatches( img_1, keypoints_1, img_2, keypoints_2,
 | |
|                good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
 | |
|                vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
 | |
| 
 | |
|   //-- Show detected matches
 | |
|   imshow( "Good Matches", img_matches );
 | |
| 
 | |
|   for( int i = 0; i < (int)good_matches.size(); i++ )
 | |
|   { printf( "-- Good Match [%d] Keypoint 1: %d  -- Keypoint 2: %d  \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
 | |
| 
 | |
|   waitKey(0);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @function readme
 | |
|  */
 | |
| void readme()
 | |
| { std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }
 | 
