246 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
|  //
 | |
|  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
|  //
 | |
|  //  By downloading, copying, installing or using the software you agree to this license.
 | |
|  //  If you do not agree to this license, do not download, install,
 | |
|  //  copy or use the software.
 | |
|  //
 | |
|  //
 | |
|  //                        Intel License Agreement
 | |
|  //                For Open Source Computer Vision Library
 | |
|  //
 | |
|  // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
|  // Third party copyrights are property of their respective owners.
 | |
|  //
 | |
|  // Redistribution and use in source and binary forms, with or without modification,
 | |
|  // are permitted provided that the following conditions are met:
 | |
|  //
 | |
|  //   * Redistribution's of source code must retain the above copyright notice,
 | |
|  //     this list of conditions and the following disclaimer.
 | |
|  //
 | |
|  //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
|  //     this list of conditions and the following disclaimer in the documentation
 | |
|  //     and/or other materials provided with the distribution.
 | |
|  //
 | |
|  //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
|  //     derived from this software without specific prior written permission.
 | |
|  //
 | |
|  // This software is provided by the copyright holders and contributors "as is" and
 | |
|  // any express or implied warranties, including, but not limited to, the implied
 | |
|  // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
|  // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
|  // indirect, incidental, special, exemplary, or consequential damages
 | |
|  // (including, but not limited to, procurement of substitute goods or services;
 | |
|  // loss of use, data, or profits; or business interruption) however caused
 | |
|  // and on any theory of liability, whether in contract, strict liability,
 | |
|  // or tort (including negligence or otherwise) arising in any way out of
 | |
|  // the use of this software, even if advised of the possibility of such damage.
 | |
|  //
 | |
|  //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/imgproc/imgproc_c.h"
 | |
| #include <limits>
 | |
| #include "test_chessboardgenerator.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| class CV_ChessboardSubpixelTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_ChessboardSubpixelTest();
 | |
| 
 | |
| protected:
 | |
|     Mat intrinsic_matrix_;
 | |
|     Mat distortion_coeffs_;
 | |
|     Size image_size_;
 | |
| 
 | |
|     void run(int);
 | |
|     void generateIntrinsicParams();
 | |
| };
 | |
| 
 | |
| 
 | |
| int calcDistance(const vector<Point2f>& set1, const vector<Point2f>& set2, double& mean_dist)
 | |
| {
 | |
|     if(set1.size() != set2.size())
 | |
|     {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     std::vector<int> indices;
 | |
|     double sum_dist = 0.0;
 | |
|     for(size_t i = 0; i < set1.size(); i++)
 | |
|     {
 | |
|         double min_dist = std::numeric_limits<double>::max();
 | |
|         int min_idx = -1;
 | |
| 
 | |
|         for(int j = 0; j < (int)set2.size(); j++)
 | |
|         {
 | |
|             double dist = norm(set1[i] - set2[j]);
 | |
|             if(dist < min_dist)
 | |
|             {
 | |
|                 min_idx = j;
 | |
|                 min_dist = dist;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // check validity of min_idx
 | |
|         if(min_idx == -1)
 | |
|         {
 | |
|             return 0;
 | |
|         }
 | |
|         std::vector<int>::iterator it = std::find(indices.begin(), indices.end(), min_idx);
 | |
|         if(it != indices.end())
 | |
|         {
 | |
|             // there are two points in set1 corresponding to the same point in set2
 | |
|             return 0;
 | |
|         }
 | |
|         indices.push_back(min_idx);
 | |
| 
 | |
| //        printf("dist %d = %f\n", (int)i, min_dist);
 | |
| 
 | |
|         sum_dist += min_dist*min_dist;
 | |
|     }
 | |
| 
 | |
|     mean_dist = sqrt(sum_dist/set1.size());
 | |
| //    printf("sum_dist = %f, set1.size() = %d, mean_dist = %f\n", sum_dist, (int)set1.size(), mean_dist);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| CV_ChessboardSubpixelTest::CV_ChessboardSubpixelTest() :
 | |
|     intrinsic_matrix_(Size(3, 3), CV_64FC1), distortion_coeffs_(Size(1, 4), CV_64FC1),
 | |
|     image_size_(640, 480)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* ///////////////////// chess_corner_test ///////////////////////// */
 | |
| void CV_ChessboardSubpixelTest::run( int )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     int  progress = 0;
 | |
| 
 | |
|     RNG& rng = ts->get_rng();
 | |
| 
 | |
|     const int runs_count = 20;
 | |
|     const int max_pattern_size = 8;
 | |
|     const int min_pattern_size = 5;
 | |
|     Mat bg(image_size_, CV_8UC1);
 | |
|     bg = Scalar(0);
 | |
| 
 | |
|     double sum_dist = 0.0;
 | |
|     int count = 0;
 | |
|     for(int i = 0; i < runs_count; i++)
 | |
|     {
 | |
|         const int pattern_width = min_pattern_size + cvtest::randInt(rng) % (max_pattern_size - min_pattern_size);
 | |
|         const int pattern_height = min_pattern_size + cvtest::randInt(rng) % (max_pattern_size - min_pattern_size);
 | |
|         Size pattern_size;
 | |
|         if(pattern_width > pattern_height)
 | |
|         {
 | |
|             pattern_size = Size(pattern_height, pattern_width);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             pattern_size = Size(pattern_width, pattern_height);
 | |
|         }
 | |
|         ChessBoardGenerator gen_chessboard(Size(pattern_size.width + 1, pattern_size.height + 1));
 | |
| 
 | |
|         // generates intrinsic camera and distortion matrices
 | |
|         generateIntrinsicParams();
 | |
| 
 | |
|         vector<Point2f> corners;
 | |
|         Mat chessboard_image = gen_chessboard(bg, intrinsic_matrix_, distortion_coeffs_, corners);
 | |
| 
 | |
|         vector<Point2f> test_corners;
 | |
|         bool result = findChessboardCorners(chessboard_image, pattern_size, test_corners, 15);
 | |
|         if(!result)
 | |
|         {
 | |
| #if 0
 | |
|             ts->printf(cvtest::TS::LOG, "Warning: chessboard was not detected! Writing image to test.png\n");
 | |
|             ts->printf(cvtest::TS::LOG, "Size = %d, %d\n", pattern_size.width, pattern_size.height);
 | |
|             ts->printf(cvtest::TS::LOG, "Intrinsic params: fx = %f, fy = %f, cx = %f, cy = %f\n",
 | |
|                        intrinsic_matrix_.at<double>(0, 0), intrinsic_matrix_.at<double>(1, 1),
 | |
|                        intrinsic_matrix_.at<double>(0, 2), intrinsic_matrix_.at<double>(1, 2));
 | |
|             ts->printf(cvtest::TS::LOG, "Distortion matrix: %f, %f, %f, %f, %f\n",
 | |
|                        distortion_coeffs_.at<double>(0, 0), distortion_coeffs_.at<double>(0, 1),
 | |
|                        distortion_coeffs_.at<double>(0, 2), distortion_coeffs_.at<double>(0, 3),
 | |
|                        distortion_coeffs_.at<double>(0, 4));
 | |
| 
 | |
|             imwrite("test.png", chessboard_image);
 | |
| #endif
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         double dist1 = 0.0;
 | |
|         int ret = calcDistance(corners, test_corners, dist1);
 | |
|         if(ret == 0)
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "findChessboardCorners returns invalid corner coordinates!\n");
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         IplImage chessboard_image_header = chessboard_image;
 | |
|         cvFindCornerSubPix(&chessboard_image_header, (CvPoint2D32f*)&test_corners[0],
 | |
|             (int)test_corners.size(), cvSize(3, 3), cvSize(1, 1), cvTermCriteria(CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,300,0.1));
 | |
|         find4QuadCornerSubpix(chessboard_image, test_corners, Size(5, 5));
 | |
| 
 | |
|         double dist2 = 0.0;
 | |
|         ret = calcDistance(corners, test_corners, dist2);
 | |
|         if(ret == 0)
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "findCornerSubpix returns invalid corner coordinates!\n");
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         ts->printf(cvtest::TS::LOG, "Error after findChessboardCorners: %f, after findCornerSubPix: %f\n",
 | |
|                    dist1, dist2);
 | |
|         sum_dist += dist2;
 | |
|         count++;
 | |
| 
 | |
|         const double max_reduce_factor = 0.8;
 | |
|         if(dist1 < dist2*max_reduce_factor)
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "findCornerSubPix increases average error!\n");
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         progress = update_progress( progress, i-1, runs_count, 0 );
 | |
|     }
 | |
|     ASSERT_NE(0, count);
 | |
|     sum_dist /= count;
 | |
|     ts->printf(cvtest::TS::LOG, "Average error after findCornerSubpix: %f\n", sum_dist);
 | |
| 
 | |
|     if( code < 0 )
 | |
|         ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| void CV_ChessboardSubpixelTest::generateIntrinsicParams()
 | |
| {
 | |
|     RNG& rng = ts->get_rng();
 | |
|     const double max_focus_length = 1000.0;
 | |
|     const double max_focus_diff = 5.0;
 | |
| 
 | |
|     double fx = cvtest::randReal(rng)*max_focus_length;
 | |
|     double fy = fx + cvtest::randReal(rng)*max_focus_diff;
 | |
|     double cx = image_size_.width/2;
 | |
|     double cy = image_size_.height/2;
 | |
| 
 | |
|     double k1 = 0.5*cvtest::randReal(rng);
 | |
|     double k2 = 0.05*cvtest::randReal(rng);
 | |
|     double p1 = 0.05*cvtest::randReal(rng);
 | |
|     double p2 = 0.05*cvtest::randReal(rng);
 | |
|     double k3 = 0.0;
 | |
| 
 | |
|     intrinsic_matrix_ = (Mat_<double>(3, 3) << fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0);
 | |
|     distortion_coeffs_ = (Mat_<double>(1, 5) << k1, k2, p1, p2, k3);
 | |
| }
 | |
| 
 | |
| TEST(Calib3d_ChessboardSubPixDetector, accuracy) { CV_ChessboardSubpixelTest test; test.safe_run(); }
 | |
| 
 | |
| /* End of file. */
 | 
