341 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// The "Square Detector" program.
 | 
						|
// It loads several images sequentially and tries to find squares in
 | 
						|
// each image
 | 
						|
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/imgproc/imgproc.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
#include "opencv2/ocl/ocl.hpp"
 | 
						|
#include <iostream>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
#define ACCURACY_CHECK
 | 
						|
 | 
						|
#ifdef ACCURACY_CHECK
 | 
						|
// check if two vectors of vector of points are near or not
 | 
						|
// prior assumption is that they are in correct order
 | 
						|
static bool checkPoints(
 | 
						|
    vector< vector<Point> > set1,
 | 
						|
    vector< vector<Point> > set2,
 | 
						|
    int maxDiff = 5)
 | 
						|
{
 | 
						|
    if(set1.size() != set2.size())
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for(vector< vector<Point> >::iterator it1 = set1.begin(), it2 = set2.begin();
 | 
						|
            it1 < set1.end() && it2 < set2.end(); it1 ++, it2 ++)
 | 
						|
    {
 | 
						|
        vector<Point> pts1 = *it1;
 | 
						|
        vector<Point> pts2 = *it2;
 | 
						|
 | 
						|
 | 
						|
        if(pts1.size() != pts2.size())
 | 
						|
        {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        for(size_t i = 0; i < pts1.size(); i ++)
 | 
						|
        {
 | 
						|
            Point pt1 = pts1[i], pt2 = pts2[i];
 | 
						|
            if(std::abs(pt1.x - pt2.x) > maxDiff ||
 | 
						|
                    std::abs(pt1.y - pt2.y) > maxDiff)
 | 
						|
            {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int thresh = 50, N = 11;
 | 
						|
const char* wndname = "OpenCL Square Detection Demo";
 | 
						|
 | 
						|
 | 
						|
// helper function:
 | 
						|
// finds a cosine of angle between vectors
 | 
						|
// from pt0->pt1 and from pt0->pt2
 | 
						|
static double angle( Point pt1, Point pt2, Point pt0 )
 | 
						|
{
 | 
						|
    double dx1 = pt1.x - pt0.x;
 | 
						|
    double dy1 = pt1.y - pt0.y;
 | 
						|
    double dx2 = pt2.x - pt0.x;
 | 
						|
    double dy2 = pt2.y - pt0.y;
 | 
						|
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// returns sequence of squares detected on the image.
 | 
						|
// the sequence is stored in the specified memory storage
 | 
						|
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
 | 
						|
{
 | 
						|
    squares.clear();
 | 
						|
    Mat pyr, timg, gray0(image.size(), CV_8U), gray;
 | 
						|
 | 
						|
    // down-scale and upscale the image to filter out the noise
 | 
						|
    pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
 | 
						|
    pyrUp(pyr, timg, image.size());
 | 
						|
    vector<vector<Point> > contours;
 | 
						|
 | 
						|
    // find squares in every color plane of the image
 | 
						|
    for( int c = 0; c < 3; c++ )
 | 
						|
    {
 | 
						|
        int ch[] = {c, 0};
 | 
						|
        mixChannels(&timg, 1, &gray0, 1, ch, 1);
 | 
						|
 | 
						|
        // try several threshold levels
 | 
						|
        for( int l = 0; l < N; l++ )
 | 
						|
        {
 | 
						|
            // hack: use Canny instead of zero threshold level.
 | 
						|
            // Canny helps to catch squares with gradient shading
 | 
						|
            if( l == 0 )
 | 
						|
            {
 | 
						|
                // apply Canny. Take the upper threshold from slider
 | 
						|
                // and set the lower to 0 (which forces edges merging)
 | 
						|
                Canny(gray0, gray, 0, thresh, 5);
 | 
						|
                // dilate canny output to remove potential
 | 
						|
                // holes between edge segments
 | 
						|
                dilate(gray, gray, Mat(), Point(-1,-1));
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // apply threshold if l!=0:
 | 
						|
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 | 
						|
                cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
 | 
						|
            }
 | 
						|
 | 
						|
            // find contours and store them all as a list
 | 
						|
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
 | 
						|
 | 
						|
            vector<Point> approx;
 | 
						|
 | 
						|
            // test each contour
 | 
						|
            for( size_t i = 0; i < contours.size(); i++ )
 | 
						|
            {
 | 
						|
                // approximate contour with accuracy proportional
 | 
						|
                // to the contour perimeter
 | 
						|
                approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
 | 
						|
 | 
						|
                // square contours should have 4 vertices after approximation
 | 
						|
                // relatively large area (to filter out noisy contours)
 | 
						|
                // and be convex.
 | 
						|
                // Note: absolute value of an area is used because
 | 
						|
                // area may be positive or negative - in accordance with the
 | 
						|
                // contour orientation
 | 
						|
                if( approx.size() == 4 &&
 | 
						|
                        fabs(contourArea(Mat(approx))) > 1000 &&
 | 
						|
                        isContourConvex(Mat(approx)) )
 | 
						|
                {
 | 
						|
                    double maxCosine = 0;
 | 
						|
 | 
						|
                    for( int j = 2; j < 5; j++ )
 | 
						|
                    {
 | 
						|
                        // find the maximum cosine of the angle between joint edges
 | 
						|
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
 | 
						|
                        maxCosine = MAX(maxCosine, cosine);
 | 
						|
                    }
 | 
						|
 | 
						|
                    // if cosines of all angles are small
 | 
						|
                    // (all angles are ~90 degree) then write quandrange
 | 
						|
                    // vertices to resultant sequence
 | 
						|
                    if( maxCosine < 0.3 )
 | 
						|
                        squares.push_back(approx);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// returns sequence of squares detected on the image.
 | 
						|
// the sequence is stored in the specified memory storage
 | 
						|
static void findSquares_ocl( const Mat& image, vector<vector<Point> >& squares )
 | 
						|
{
 | 
						|
    squares.clear();
 | 
						|
 | 
						|
    Mat gray;
 | 
						|
    cv::ocl::oclMat pyr_ocl, timg_ocl, gray0_ocl, gray_ocl;
 | 
						|
 | 
						|
    // down-scale and upscale the image to filter out the noise
 | 
						|
    ocl::pyrDown(ocl::oclMat(image), pyr_ocl);
 | 
						|
    ocl::pyrUp(pyr_ocl, timg_ocl);
 | 
						|
 | 
						|
    vector<vector<Point> > contours;
 | 
						|
    vector<cv::ocl::oclMat> gray0s;
 | 
						|
    ocl::split(timg_ocl, gray0s); // split 3 channels into a vector of oclMat
 | 
						|
    // find squares in every color plane of the image
 | 
						|
    for( int c = 0; c < 3; c++ )
 | 
						|
    {
 | 
						|
        gray0_ocl = gray0s[c];
 | 
						|
        // try several threshold levels
 | 
						|
        for( int l = 0; l < N; l++ )
 | 
						|
        {
 | 
						|
            // hack: use Canny instead of zero threshold level.
 | 
						|
            // Canny helps to catch squares with gradient shading
 | 
						|
            if( l == 0 )
 | 
						|
            {
 | 
						|
                // do canny on OpenCL device
 | 
						|
                // apply Canny. Take the upper threshold from slider
 | 
						|
                // and set the lower to 0 (which forces edges merging)
 | 
						|
                cv::ocl::Canny(gray0_ocl, gray_ocl, 0, thresh, 5);
 | 
						|
                // dilate canny output to remove potential
 | 
						|
                // holes between edge segments
 | 
						|
                ocl::dilate(gray_ocl, gray_ocl, Mat(), Point(-1,-1));
 | 
						|
                gray = Mat(gray_ocl);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // apply threshold if l!=0:
 | 
						|
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 | 
						|
                cv::ocl::threshold(gray0_ocl, gray_ocl, (l+1)*255/N, 255, THRESH_BINARY);
 | 
						|
                gray = gray_ocl;
 | 
						|
            }
 | 
						|
 | 
						|
            // find contours and store them all as a list
 | 
						|
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
 | 
						|
 | 
						|
            vector<Point> approx;
 | 
						|
            // test each contour
 | 
						|
            for( size_t i = 0; i < contours.size(); i++ )
 | 
						|
            {
 | 
						|
                // approximate contour with accuracy proportional
 | 
						|
                // to the contour perimeter
 | 
						|
                approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
 | 
						|
 | 
						|
                // square contours should have 4 vertices after approximation
 | 
						|
                // relatively large area (to filter out noisy contours)
 | 
						|
                // and be convex.
 | 
						|
                // Note: absolute value of an area is used because
 | 
						|
                // area may be positive or negative - in accordance with the
 | 
						|
                // contour orientation
 | 
						|
                if( approx.size() == 4 &&
 | 
						|
                        fabs(contourArea(Mat(approx))) > 1000 &&
 | 
						|
                        isContourConvex(Mat(approx)) )
 | 
						|
                {
 | 
						|
                    double maxCosine = 0;
 | 
						|
                    for( int j = 2; j < 5; j++ )
 | 
						|
                    {
 | 
						|
                        // find the maximum cosine of the angle between joint edges
 | 
						|
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
 | 
						|
                        maxCosine = MAX(maxCosine, cosine);
 | 
						|
                    }
 | 
						|
 | 
						|
                    // if cosines of all angles are small
 | 
						|
                    // (all angles are ~90 degree) then write quandrange
 | 
						|
                    // vertices to resultant sequence
 | 
						|
                    if( maxCosine < 0.3 )
 | 
						|
                        squares.push_back(approx);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// the function draws all the squares in the image
 | 
						|
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
 | 
						|
{
 | 
						|
    for( size_t i = 0; i < squares.size(); i++ )
 | 
						|
    {
 | 
						|
        const Point* p = &squares[i][0];
 | 
						|
        int n = (int)squares[i].size();
 | 
						|
        polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// draw both pure-C++ and ocl square results onto a single image
 | 
						|
static Mat drawSquaresBoth( const Mat& image,
 | 
						|
                            const vector<vector<Point> >& sqsCPP,
 | 
						|
                            const vector<vector<Point> >& sqsOCL
 | 
						|
)
 | 
						|
{
 | 
						|
    Mat imgToShow(Size(image.cols * 2, image.rows), image.type());
 | 
						|
    Mat lImg = imgToShow(Rect(Point(0, 0), image.size()));
 | 
						|
    Mat rImg = imgToShow(Rect(Point(image.cols, 0), image.size()));
 | 
						|
    image.copyTo(lImg);
 | 
						|
    image.copyTo(rImg);
 | 
						|
    drawSquares(lImg, sqsCPP);
 | 
						|
    drawSquares(rImg, sqsOCL);
 | 
						|
    float fontScale = 0.8f;
 | 
						|
    Scalar white = Scalar::all(255), black = Scalar::all(0);
 | 
						|
 | 
						|
    putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2);
 | 
						|
    putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2);
 | 
						|
    putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1);
 | 
						|
    putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1);
 | 
						|
 | 
						|
    return imgToShow;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int main(int argc, char** argv)
 | 
						|
{
 | 
						|
    const char* keys =
 | 
						|
        "{ i | input   |                    | specify input image }"
 | 
						|
        "{ o | output  | squares_output.jpg | specify output save path}"
 | 
						|
        "{ h | help    | false              | print help message }";
 | 
						|
    CommandLineParser cmd(argc, argv, keys);
 | 
						|
    string inputName = cmd.get<string>("i");
 | 
						|
    string outfile = cmd.get<string>("o");
 | 
						|
 | 
						|
    if(cmd.get<bool>("help"))
 | 
						|
    {
 | 
						|
        cout << "Usage : squares [options]" << endl;
 | 
						|
        cout << "Available options:" << endl;
 | 
						|
        cmd.printParams();
 | 
						|
        return EXIT_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    int iterations = 10;
 | 
						|
    namedWindow( wndname, CV_WINDOW_AUTOSIZE );
 | 
						|
    vector<vector<Point> > squares_cpu, squares_ocl;
 | 
						|
 | 
						|
    Mat image = imread(inputName, 1);
 | 
						|
    if( image.empty() )
 | 
						|
    {
 | 
						|
        cout << "Couldn't load " << inputName << endl;
 | 
						|
        return EXIT_FAILURE;
 | 
						|
    }
 | 
						|
 | 
						|
    int j = iterations;
 | 
						|
    int64 t_ocl = 0, t_cpp = 0;
 | 
						|
    //warm-ups
 | 
						|
    cout << "warming up ..." << endl;
 | 
						|
    findSquares(image, squares_cpu);
 | 
						|
    findSquares_ocl(image, squares_ocl);
 | 
						|
 | 
						|
 | 
						|
#ifdef ACCURACY_CHECK
 | 
						|
    cout << "Checking ocl accuracy ... " << endl;
 | 
						|
    cout << (checkPoints(squares_cpu, squares_ocl) ? "Pass" : "Failed") << endl;
 | 
						|
#endif
 | 
						|
    do
 | 
						|
    {
 | 
						|
        int64 t_start = cv::getTickCount();
 | 
						|
        findSquares(image, squares_cpu);
 | 
						|
        t_cpp += cv::getTickCount() - t_start;
 | 
						|
 | 
						|
 | 
						|
        t_start  = cv::getTickCount();
 | 
						|
        findSquares_ocl(image, squares_ocl);
 | 
						|
        t_ocl += cv::getTickCount() - t_start;
 | 
						|
        cout << "run loop: " << j << endl;
 | 
						|
    }
 | 
						|
    while(--j);
 | 
						|
    cout << "cpp average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
 | 
						|
    cout << "ocl average time: " << 1000.0f * (double)t_ocl / getTickFrequency() / iterations << "ms" << endl;
 | 
						|
 | 
						|
    Mat result = drawSquaresBoth(image, squares_cpu, squares_ocl);
 | 
						|
    imshow(wndname, result);
 | 
						|
    imwrite(outfile, result);
 | 
						|
    cvWaitKey(0);
 | 
						|
 | 
						|
    return EXIT_SUCCESS;
 | 
						|
}
 |