85 lines
2.7 KiB
C++
85 lines
2.7 KiB
C++
#include "opencv2/ml/ml.hpp"
|
|
#include <stdio.h>
|
|
/*
|
|
The sample demonstrates how to use different decision trees.
|
|
*/
|
|
void print_result(float train_err, float test_err, const CvMat* var_imp)
|
|
{
|
|
printf( "train error %f\n", train_err );
|
|
printf( "test error %f\n\n", test_err );
|
|
|
|
if (var_imp)
|
|
{
|
|
bool is_flt = false;
|
|
if ( CV_MAT_TYPE( var_imp->type ) == CV_32FC1)
|
|
is_flt = true;
|
|
printf( "variable impotance\n" );
|
|
for( int i = 0; i < var_imp->cols; i++)
|
|
{
|
|
printf( "%d %f\n", i, is_flt ? var_imp->data.fl[i] : var_imp->data.db[i] );
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
int main()
|
|
{
|
|
const int train_sample_count = 300;
|
|
|
|
//#define LEPIOTA
|
|
#ifdef LEPIOTA
|
|
const char* filename = "../../../OpenCV/samples/c/agaricus-lepiota.data";
|
|
#else
|
|
const char* filename = "../../../OpenCV/samples/c/waveform.data";
|
|
#endif
|
|
|
|
CvDTree dtree;
|
|
CvBoost boost;
|
|
CvRTrees rtrees;
|
|
CvERTrees ertrees;
|
|
CvGBTrees gbtrees;
|
|
|
|
CvMLData data;
|
|
|
|
CvTrainTestSplit spl( train_sample_count );
|
|
|
|
if ( data.read_csv( filename ) == 0)
|
|
{
|
|
|
|
#ifdef LEPIOTA
|
|
data.set_response_idx( 0 );
|
|
#else
|
|
data.set_response_idx( 21 );
|
|
data.change_var_type( 21, CV_VAR_CATEGORICAL );
|
|
#endif
|
|
|
|
data.set_train_test_split( &spl );
|
|
|
|
printf("======DTREE=====\n");
|
|
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
|
|
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
|
|
|
|
#ifdef LEPIOTA
|
|
printf("======BOOST=====\n");
|
|
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
|
|
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data ), 0 );
|
|
#endif
|
|
|
|
printf("======RTREES=====\n");
|
|
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
|
print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() );
|
|
|
|
printf("======ERTREES=====\n");
|
|
ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
|
print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );
|
|
|
|
printf("======GBTREES=====\n");
|
|
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.05f, 0.6f, 10, true));
|
|
print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 );
|
|
}
|
|
else
|
|
printf("File can not be read");
|
|
|
|
return 0;
|
|
}
|