opencv/modules/features2d/src/detectors.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

359 lines
12 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
/*
* FeatureDetector
*/
FeatureDetector::~FeatureDetector()
{}
void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
keypoints.clear();
if( image.empty() )
return;
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
detectImpl( image, keypoints, mask );
}
void FeatureDetector::detect(const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, const std::vector<Mat>& masks ) const
{
pointCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] );
}
/*void FeatureDetector::read( const FileNode& )
{}
void FeatureDetector::write( FileStorage& ) const
{}*/
bool FeatureDetector::empty() const
{
return false;
}
void FeatureDetector::removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints )
{
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
Ptr<FeatureDetector> FeatureDetector::create( const std::string& detectorType )
{
if( detectorType.find("Grid") == 0 )
{
return new GridAdaptedFeatureDetector(FeatureDetector::create(
detectorType.substr(strlen("Grid"))));
}
if( detectorType.find("Pyramid") == 0 )
{
return new PyramidAdaptedFeatureDetector(FeatureDetector::create(
detectorType.substr(strlen("Pyramid"))));
}
if( detectorType.find("Dynamic") == 0 )
{
return new DynamicAdaptedFeatureDetector(AdjusterAdapter::create(
detectorType.substr(strlen("Dynamic"))));
}
if( detectorType.compare( "HARRIS" ) == 0 )
{
Ptr<FeatureDetector> fd = FeatureDetector::create("GFTT");
fd->set("useHarrisDetector", true);
return fd;
}
return Algorithm::create<FeatureDetector>("Feature2D." + detectorType);
}
GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
double _minDistance, int _blockSize,
bool _useHarrisDetector, double _k )
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
{
}
void GFTTDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
{
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
std::vector<Point2f> corners;
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, mask,
blockSize, useHarrisDetector, k );
keypoints.resize(corners.size());
std::vector<Point2f>::const_iterator corner_it = corners.begin();
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
{
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* DenseFeatureDetector
*/
DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featureScaleLevels,
float _featureScaleMul, int _initXyStep,
int _initImgBound, bool _varyXyStepWithScale,
bool _varyImgBoundWithScale ) :
initFeatureScale(_initFeatureScale), featureScaleLevels(_featureScaleLevels),
featureScaleMul(_featureScaleMul), initXyStep(_initXyStep), initImgBound(_initImgBound),
varyXyStepWithScale(_varyXyStepWithScale), varyImgBoundWithScale(_varyImgBoundWithScale)
{}
void DenseFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
float curScale = static_cast<float>(initFeatureScale);
int curStep = initXyStep;
int curBound = initImgBound;
for( int curLevel = 0; curLevel < featureScaleLevels; curLevel++ )
{
for( int x = curBound; x < image.cols - curBound; x += curStep )
{
for( int y = curBound; y < image.rows - curBound; y += curStep )
{
keypoints.push_back( KeyPoint(static_cast<float>(x), static_cast<float>(y), curScale) );
}
}
curScale = static_cast<float>(curScale * featureScaleMul);
if( varyXyStepWithScale ) curStep = static_cast<int>( curStep * featureScaleMul + 0.5f );
if( varyImgBoundWithScale ) curBound = static_cast<int>( curBound * featureScaleMul + 0.5f );
}
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
/*
* GridAdaptedFeatureDetector
*/
GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector,
int _maxTotalKeypoints, int _gridRows, int _gridCols )
: detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols)
{}
bool GridAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
}
struct ResponseComparator
{
bool operator() (const KeyPoint& a, const KeyPoint& b)
{
return std::abs(a.response) > std::abs(b.response);
}
};
static void keepStrongest( int N, std::vector<KeyPoint>& keypoints )
{
if( (int)keypoints.size() > N )
{
std::vector<KeyPoint>::iterator nth = keypoints.begin() + N;
std::nth_element( keypoints.begin(), nth, keypoints.end(), ResponseComparator() );
keypoints.erase( nth, keypoints.end() );
}
}
namespace {
class GridAdaptedFeatureDetectorInvoker
{
private:
int gridRows_, gridCols_;
int maxPerCell_;
std::vector<KeyPoint>& keypoints_;
const Mat& image_;
const Mat& mask_;
const Ptr<FeatureDetector>& detector_;
#ifdef HAVE_TBB
tbb::mutex* kptLock_;
#endif
GridAdaptedFeatureDetectorInvoker& operator=(const GridAdaptedFeatureDetectorInvoker&); // to quiet MSVC
public:
GridAdaptedFeatureDetectorInvoker(const Ptr<FeatureDetector>& detector, const Mat& image, const Mat& mask, std::vector<KeyPoint>& keypoints, int maxPerCell, int gridRows, int gridCols
#ifdef HAVE_TBB
, tbb::mutex* kptLock
#endif
) : gridRows_(gridRows), gridCols_(gridCols), maxPerCell_(maxPerCell),
keypoints_(keypoints), image_(image), mask_(mask), detector_(detector)
#ifdef HAVE_TBB
, kptLock_(kptLock)
#endif
{
}
void operator() (const BlockedRange& range) const
{
for (int i = range.begin(); i < range.end(); ++i)
{
int celly = i / gridCols_;
int cellx = i - celly * gridCols_;
Range row_range((celly*image_.rows)/gridRows_, ((celly+1)*image_.rows)/gridRows_);
Range col_range((cellx*image_.cols)/gridCols_, ((cellx+1)*image_.cols)/gridCols_);
Mat sub_image = image_(row_range, col_range);
Mat sub_mask;
if (!mask_.empty()) sub_mask = mask_(row_range, col_range);
std::vector<KeyPoint> sub_keypoints;
sub_keypoints.reserve(maxPerCell_);
detector_->detect( sub_image, sub_keypoints, sub_mask );
keepStrongest( maxPerCell_, sub_keypoints );
std::vector<cv::KeyPoint>::iterator it = sub_keypoints.begin(),
end = sub_keypoints.end();
for( ; it != end; ++it )
{
it->pt.x += col_range.start;
it->pt.y += row_range.start;
}
#ifdef HAVE_TBB
tbb::mutex::scoped_lock join_keypoints(*kptLock_);
#endif
keypoints_.insert( keypoints_.end(), sub_keypoints.begin(), sub_keypoints.end() );
}
}
};
} // namepace
void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
if (image.empty() || maxTotalKeypoints < gridRows * gridCols)
{
keypoints.clear();
return;
}
keypoints.reserve(maxTotalKeypoints);
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
#ifdef HAVE_TBB
tbb::mutex kptLock;
cv::parallel_for(cv::BlockedRange(0, gridRows * gridCols),
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
#else
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols)(cv::BlockedRange(0, gridRows * gridCols));
#endif
}
/*
* PyramidAdaptedFeatureDetector
*/
PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector, int _maxLevel )
: detector(_detector), maxLevel(_maxLevel)
{}
bool PyramidAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
}
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
Mat src = image;
Mat src_mask = mask;
Mat dilated_mask;
if( !mask.empty() )
{
dilate( mask, dilated_mask, Mat() );
Mat mask255( mask.size(), CV_8UC1, Scalar(0) );
mask255.setTo( Scalar(255), dilated_mask != 0 );
dilated_mask = mask255;
}
for( int l = 0, multiplier = 1; l <= maxLevel; ++l, multiplier *= 2 )
{
// Detect on current level of the pyramid
std::vector<KeyPoint> new_pts;
detector->detect( src, new_pts, src_mask );
std::vector<KeyPoint>::iterator it = new_pts.begin(),
end = new_pts.end();
for( ; it != end; ++it)
{
it->pt.x *= multiplier;
it->pt.y *= multiplier;
it->size *= multiplier;
it->octave = l;
}
keypoints.insert( keypoints.end(), new_pts.begin(), new_pts.end() );
// Downsample
if( l < maxLevel )
{
Mat dst;
pyrDown( src, dst );
src = dst;
if( !mask.empty() )
resize( dilated_mask, src_mask, src.size(), 0, 0, CV_INTER_AREA );
}
}
if( !mask.empty() )
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
}