2013-09-05 19:03:00 +04:00

897 lines
33 KiB
Python
Executable File

#!/usr/bin/env python
from __future__ import print_function
import hdr_parser, sys, re, os
from string import Template
if sys.version_info[0] >= 3:
from io import StringIO
else:
from cStringIO import StringIO
ignored_arg_types = ["RNG*"]
gen_template_check_self = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type))
return failmsgp("Incorrect type of self (must be '${name}' or its derivative)");
$cname* _self_ = ${amp}((pyopencv_${name}_t*)self)->v${get};
""")
gen_template_check_self_algo = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type))
return failmsgp("Incorrect type of self (must be '${name}' or its derivative)");
$cname* _self_ = dynamic_cast<$cname*>(${amp}((pyopencv_${name}_t*)self)->v.get());
""")
gen_template_call_constructor_prelude = Template("""self = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
new (&(self->v)) Ptr<$cname>(); // init Ptr with placement new
if(self) """)
gen_template_call_constructor = Template("""self->v.reset(new ${cname}${args})""")
gen_template_simple_call_constructor_prelude = Template("""self = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
if(self) """)
gen_template_simple_call_constructor = Template("""self->v = ${cname}${args}""")
gen_template_parse_args = Template("""const char* keywords[] = { $kw_list, NULL };
if( PyArg_ParseTupleAndKeywords(args, kw, "$fmtspec", (char**)keywords, $parse_arglist)$code_cvt )""")
gen_template_func_body = Template("""$code_decl
$code_parse
{
${code_prelude}ERRWRAP2($code_fcall);
$code_ret;
}
""")
py_major_version = sys.version_info[0]
if py_major_version >= 3:
head_init_str = "PyVarObject_HEAD_INIT(&PyType_Type, 0)"
else:
head_init_str = """PyObject_HEAD_INIT(&PyType_Type)
0,"""
gen_template_simple_type_decl = Template("""
struct pyopencv_${name}_t
{
PyObject_HEAD
${cname} v;
};
static PyTypeObject pyopencv_${name}_Type =
{
%s
MODULESTR".$wname",
sizeof(pyopencv_${name}_t),
};
static void pyopencv_${name}_dealloc(PyObject* self)
{
PyObject_Del(self);
}
template<> PyObject* pyopencv_from(const ${cname}& r)
{
pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
m->v = r;
return (PyObject*)m;
}
template<> bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name)
{
if( src == NULL || src == Py_None )
return true;
if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
{
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
}
dst = ((pyopencv_${name}_t*)src)->v;
return true;
}
""" % head_init_str)
gen_template_type_decl = Template("""
struct pyopencv_${name}_t
{
PyObject_HEAD
Ptr<${cname1}> v;
};
static PyTypeObject pyopencv_${name}_Type =
{
%s
MODULESTR".$wname",
sizeof(pyopencv_${name}_t),
};
static void pyopencv_${name}_dealloc(PyObject* self)
{
((pyopencv_${name}_t*)self)->v.release();
PyObject_Del(self);
}
template<> PyObject* pyopencv_from(const Ptr<${cname}>& r)
{
pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
new (&(m->v)) Ptr<$cname1>(); // init Ptr with placement new
m->v = r;
return (PyObject*)m;
}
template<> bool pyopencv_to(PyObject* src, Ptr<${cname}>& dst, const char* name)
{
if( src == NULL || src == Py_None )
return true;
if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
{
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
}
dst = ((pyopencv_${name}_t*)src)->v.dynamicCast<${cname}>();
return true;
}
""" % head_init_str)
gen_template_map_type_cvt = Template("""
template<> bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name);
""")
gen_template_set_prop_from_map = Template("""
if( PyMapping_HasKeyString(src, (char*)"$propname") )
{
tmp = PyMapping_GetItemString(src, (char*)"$propname");
ok = tmp && pyopencv_to(tmp, dst.$propname);
Py_DECREF(tmp);
if(!ok) return false;
}""")
gen_template_type_impl = Template("""
static PyObject* pyopencv_${name}_repr(PyObject* self)
{
char str[1000];
sprintf(str, "<$wname %p>", self);
return PyString_FromString(str);
}
${getset_code}
static PyGetSetDef pyopencv_${name}_getseters[] =
{${getset_inits}
{NULL} /* Sentinel */
};
${methods_code}
static PyMethodDef pyopencv_${name}_methods[] =
{
${methods_inits}
{NULL, NULL}
};
static void pyopencv_${name}_specials(void)
{
pyopencv_${name}_Type.tp_base = ${baseptr};
pyopencv_${name}_Type.tp_dealloc = pyopencv_${name}_dealloc;
pyopencv_${name}_Type.tp_repr = pyopencv_${name}_repr;
pyopencv_${name}_Type.tp_getset = pyopencv_${name}_getseters;
pyopencv_${name}_Type.tp_methods = pyopencv_${name}_methods;${extra_specials}
}
""")
gen_template_get_prop = Template("""
static PyObject* pyopencv_${name}_get_${member}(pyopencv_${name}_t* p, void *closure)
{
return pyopencv_from(p->v${access}${member});
}
""")
gen_template_get_prop_algo = Template("""
static PyObject* pyopencv_${name}_get_${member}(pyopencv_${name}_t* p, void *closure)
{
return pyopencv_from(dynamic_cast<$cname*>(p->v.get())${access}${member});
}
""")
gen_template_set_prop = Template("""
static int pyopencv_${name}_set_${member}(pyopencv_${name}_t* p, PyObject *value, void *closure)
{
if (value == NULL)
{
PyErr_SetString(PyExc_TypeError, "Cannot delete the ${member} attribute");
return -1;
}
return pyopencv_to(value, p->v${access}${member}) ? 0 : -1;
}
""")
gen_template_set_prop_algo = Template("""
static int pyopencv_${name}_set_${member}(pyopencv_${name}_t* p, PyObject *value, void *closure)
{
if (value == NULL)
{
PyErr_SetString(PyExc_TypeError, "Cannot delete the ${member} attribute");
return -1;
}
return pyopencv_to(value, dynamic_cast<$cname*>(p->v.get())${access}${member}) ? 0 : -1;
}
""")
gen_template_prop_init = Template("""
{(char*)"${member}", (getter)pyopencv_${name}_get_${member}, NULL, (char*)"${member}", NULL},""")
gen_template_rw_prop_init = Template("""
{(char*)"${member}", (getter)pyopencv_${name}_get_${member}, (setter)pyopencv_${name}_set_${member}, (char*)"${member}", NULL},""")
simple_argtype_mapping = {
"bool": ("bool", "b", "0"),
"int": ("int", "i", "0"),
"float": ("float", "f", "0.f"),
"double": ("double", "d", "0"),
"c_string": ("char*", "s", '(char*)""')
}
def normalize_class_name(name):
return re.sub(r"^cv\.", "", name).replace(".", "_")
class ClassProp(object):
def __init__(self, decl):
self.tp = decl[0].replace("*", "_ptr")
self.name = decl[1]
self.readonly = True
if "/RW" in decl[3]:
self.readonly = False
class ClassInfo(object):
def __init__(self, name, decl=None):
self.cname = name.replace(".", "::")
self.name = self.wname = normalize_class_name(name)
self.ismap = False
self.issimple = False
self.isalgorithm = False
self.methods = {}
self.props = []
self.consts = {}
customname = False
if decl:
self.bases = decl[1].split()[1:]
if len(self.bases) > 1:
print("Note: Class %s has more than 1 base class (not supported by Python C extensions)" % (self.name,))
print(" Bases: ", " ".join(self.bases))
print(" Only the first base class will be used")
self.bases = [self.bases[0].strip(",")]
#return sys.exit(-1)
if self.bases and self.bases[0].startswith("cv::"):
self.bases[0] = self.bases[0][4:]
if self.bases and self.bases[0] == "Algorithm":
self.isalgorithm = True
for m in decl[2]:
if m.startswith("="):
self.wname = m[1:]
customname = True
elif m == "/Map":
self.ismap = True
elif m == "/Simple":
self.issimple = True
self.props = [ClassProp(p) for p in decl[3]]
if not customname and self.wname.startswith("Cv"):
self.wname = self.wname[2:]
def gen_map_code(self, all_classes):
code = "static bool pyopencv_to(PyObject* src, %s& dst, const char* name)\n{\n PyObject* tmp;\n bool ok;\n" % (self.cname)
code += "".join([gen_template_set_prop_from_map.substitute(propname=p.name,proptype=p.tp) for p in self.props])
if self.bases:
code += "\n return pyopencv_to(src, (%s&)dst, name);\n}\n" % all_classes[self.bases[0]].cname
else:
code += "\n return true;\n}\n"
return code
def gen_code(self, all_classes):
if self.ismap:
return self.gen_map_code(all_classes)
getset_code = StringIO()
getset_inits = StringIO()
sorted_props = [(p.name, p) for p in self.props]
sorted_props.sort()
access_op = "->"
if self.issimple:
access_op = "."
for pname, p in sorted_props:
if self.isalgorithm:
getset_code.write(gen_template_get_prop_algo.substitute(name=self.name, cname=self.cname, member=pname, membertype=p.tp, access=access_op))
else:
getset_code.write(gen_template_get_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op))
if p.readonly:
getset_inits.write(gen_template_prop_init.substitute(name=self.name, member=pname))
else:
if self.isalgorithm:
getset_code.write(gen_template_set_prop_algo.substitute(name=self.name, cname=self.cname, member=pname, membertype=p.tp, access=access_op))
else:
getset_code.write(gen_template_set_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op))
getset_inits.write(gen_template_rw_prop_init.substitute(name=self.name, member=pname))
methods_code = StringIO()
methods_inits = StringIO()
sorted_methods = list(self.methods.items())
sorted_methods.sort()
for mname, m in sorted_methods:
methods_code.write(m.gen_code(all_classes))
methods_inits.write(m.get_tab_entry())
baseptr = "NULL"
if self.bases and self.bases[0] in all_classes:
baseptr = "&pyopencv_" + all_classes[self.bases[0]].name + "_Type"
code = gen_template_type_impl.substitute(name=self.name, wname=self.wname, cname=self.cname,
getset_code=getset_code.getvalue(), getset_inits=getset_inits.getvalue(),
methods_code=methods_code.getvalue(), methods_inits=methods_inits.getvalue(),
baseptr=baseptr, extra_specials="")
return code
class ConstInfo(object):
def __init__(self, name, val):
self.cname = name.replace(".", "::")
self.name = re.sub(r"^cv\.", "", name).replace(".", "_")
if self.name.startswith("Cv"):
self.name = self.name[2:]
self.name = re.sub(r"([a-z])([A-Z])", r"\1_\2", self.name)
self.name = self.name.upper()
self.value = val
class ArgInfo(object):
def __init__(self, arg_tuple):
self.tp = arg_tuple[0]
self.name = arg_tuple[1]
self.defval = arg_tuple[2]
self.isarray = False
self.arraylen = 0
self.arraycvt = None
self.inputarg = True
self.outputarg = False
self.returnarg = False
for m in arg_tuple[3]:
if m == "/O":
self.inputarg = False
self.outputarg = True
self.returnarg = True
elif m == "/IO":
self.inputarg = True
self.outputarg = True
self.returnarg = True
elif m.startswith("/A"):
self.isarray = True
self.arraylen = m[2:].strip()
elif m.startswith("/CA"):
self.isarray = True
self.arraycvt = m[2:].strip()
self.py_inputarg = False
self.py_outputarg = False
def isbig(self):
return self.tp == "Mat" or self.tp == "vector_Mat"# or self.tp.startswith("vector")
def crepr(self):
return "ArgInfo(\"%s\", %d)" % (self.name, self.outputarg)
class FuncVariant(object):
def __init__(self, classname, name, decl, isconstructor):
self.classname = classname
self.name = self.wname = name
self.isconstructor = isconstructor
if self.isconstructor:
if self.wname.startswith("Cv"):
self.wname = self.wname[2:]
else:
self.wname = self.classname
self.rettype = decl[1]
if self.rettype == "void":
self.rettype = ""
self.args = []
self.array_counters = {}
for a in decl[3]:
ainfo = ArgInfo(a)
if ainfo.isarray and not ainfo.arraycvt:
c = ainfo.arraylen
c_arrlist = self.array_counters.get(c, [])
if c_arrlist:
c_arrlist.append(ainfo.name)
else:
self.array_counters[c] = [ainfo.name]
self.args.append(ainfo)
self.init_pyproto()
def init_pyproto(self):
# string representation of argument list, with '[', ']' symbols denoting optional arguments, e.g.
# "src1, src2[, dst[, mask]]" for cv.add
argstr = ""
# list of all input arguments of the Python function, with the argument numbers:
# [("src1", 0), ("src2", 1), ("dst", 2), ("mask", 3)]
# we keep an argument number to find the respective argument quickly, because
# some of the arguments of C function may not present in the Python function (such as array counters)
# or even go in a different order ("heavy" output parameters of the C function
# become the first optional input parameters of the Python function, and thus they are placed right after
# non-optional input parameters)
arglist = []
# the list of "heavy" output parameters. Heavy parameters are the parameters
# that can be expensive to allocate each time, such as vectors and matrices (see isbig).
outarr_list = []
# the list of output parameters. Also includes input/output parameters.
outlist = []
firstoptarg = 1000000
argno = -1
for a in self.args:
argno += 1
if a.name in self.array_counters:
continue
if a.tp in ignored_arg_types:
continue
if a.returnarg:
outlist.append((a.name, argno))
if (not a.inputarg) and a.isbig():
outarr_list.append((a.name, argno))
continue
if not a.inputarg:
continue
if not a.defval:
arglist.append((a.name, argno))
else:
firstoptarg = min(firstoptarg, len(arglist))
# if there are some array output parameters before the first default parameter, they
# are added as optional parameters before the first optional parameter
if outarr_list:
arglist += outarr_list
outarr_list = []
arglist.append((a.name, argno))
if outarr_list:
firstoptarg = min(firstoptarg, len(arglist))
arglist += outarr_list
firstoptarg = min(firstoptarg, len(arglist))
noptargs = len(arglist) - firstoptarg
argnamelist = [aname for aname, argno in arglist]
argstr = ", ".join(argnamelist[:firstoptarg])
argstr = "[, ".join([argstr] + argnamelist[firstoptarg:])
argstr += "]" * noptargs
if self.rettype:
outlist = [("retval", -1)] + outlist
elif self.isconstructor:
assert outlist == []
outlist = [("self", -1)]
if self.isconstructor:
classname = self.classname
if classname.startswith("Cv"):
classname=classname[2:]
outstr = "<%s object>" % (classname,)
elif outlist:
outstr = ", ".join([o[0] for o in outlist])
else:
outstr = "None"
self.py_docstring = "%s(%s) -> %s" % (self.wname, argstr, outstr)
self.py_noptargs = noptargs
self.py_arglist = arglist
for aname, argno in arglist:
self.args[argno].py_inputarg = True
for aname, argno in outlist:
if argno >= 0:
self.args[argno].py_outputarg = True
self.py_outlist = outlist
class FuncInfo(object):
def __init__(self, classname, name, cname, isconstructor):
self.classname = classname
self.name = name
self.cname = cname
self.isconstructor = isconstructor
self.variants = []
def add_variant(self, decl):
self.variants.append(FuncVariant(self.classname, self.name, decl, self.isconstructor))
def get_wrapper_name(self):
name = self.name
if self.classname:
classname = self.classname + "_"
if "[" in name:
name = "getelem"
else:
classname = ""
return "pyopencv_" + classname + name
def get_wrapper_prototype(self):
full_fname = self.get_wrapper_name()
if self.classname and not self.isconstructor:
self_arg = "self"
else:
self_arg = ""
return "static PyObject* %s(PyObject* %s, PyObject* args, PyObject* kw)" % (full_fname, self_arg)
def get_tab_entry(self):
docstring_list = []
have_empty_constructor = False
for v in self.variants:
s = v.py_docstring
if (not v.py_arglist) and self.isconstructor:
have_empty_constructor = True
if s not in docstring_list:
docstring_list.append(s)
# if there are just 2 constructors: default one and some other,
# we simplify the notation.
# Instead of ClassName(args ...) -> object or ClassName() -> object
# we write ClassName([args ...]) -> object
if have_empty_constructor and len(self.variants) == 2:
idx = self.variants[1].py_arglist != []
s = self.variants[idx].py_docstring
p1 = s.find("(")
p2 = s.rfind(")")
docstring_list = [s[:p1+1] + "[" + s[p1+1:p2] + "]" + s[p2:]]
return Template(' {"$py_funcname", (PyCFunction)$wrap_funcname, METH_VARARGS | METH_KEYWORDS, "$py_docstring"},\n'
).substitute(py_funcname = self.variants[0].wname, wrap_funcname=self.get_wrapper_name(),
py_docstring = " or ".join(docstring_list))
def gen_code(self, all_classes):
proto = self.get_wrapper_prototype()
code = "%s\n{\n" % (proto,)
selfinfo = ClassInfo("")
ismethod = self.classname != "" and not self.isconstructor
# full name is needed for error diagnostic in PyArg_ParseTupleAndKeywords
fullname = self.name
if self.classname:
selfinfo = all_classes[self.classname]
if not self.isconstructor:
amp = "&" if selfinfo.issimple else ""
if selfinfo.isalgorithm:
code += gen_template_check_self_algo.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp)
else:
get = "" if selfinfo.issimple else ".get()"
code += gen_template_check_self.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp, get=get)
fullname = selfinfo.wname + "." + fullname
all_code_variants = []
declno = -1
for v in self.variants:
code_decl = ""
code_ret = ""
code_cvt_list = []
code_args = "("
all_cargs = []
parse_arglist = []
# declare all the C function arguments,
# add necessary conversions from Python objects to code_cvt_list,
# form the function/method call,
# for the list of type mappings
for a in v.args:
if a.tp in ignored_arg_types:
defval = a.defval
if not defval and a.tp.endswith("*"):
defval = 0
assert defval
if not code_args.endswith("("):
code_args += ", "
code_args += defval
all_cargs.append([[None, ""], ""])
continue
tp1 = tp = a.tp
amp = ""
defval0 = ""
if tp.endswith("*"):
tp = tp1 = tp[:-1]
amp = "&"
if tp.endswith("*"):
defval0 = "0"
tp1 = tp.replace("*", "_ptr")
if tp1.endswith("*"):
print("Error: type with star: a.tp=%s, tp=%s, tp1=%s" % (a.tp, tp, tp1))
sys.exit(-1)
amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0))
parse_name = a.name
if a.py_inputarg:
if amapping[1] == "O":
code_decl += " PyObject* pyobj_%s = NULL;\n" % (a.name,)
parse_name = "pyobj_" + a.name
if a.tp == 'char':
code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)"% (a.name, a.name, a.crepr()))
else:
code_cvt_list.append("pyopencv_to(pyobj_%s, %s, %s)" % (a.name, a.name, a.crepr()))
all_cargs.append([amapping, parse_name])
defval = a.defval
if not defval:
defval = amapping[2]
# "tp arg = tp();" is equivalent to "tp arg;" in the case of complex types
if defval == tp + "()" and amapping[1] == "O":
defval = ""
if a.outputarg and not a.inputarg:
defval = ""
if defval:
code_decl += " %s %s=%s;\n" % (amapping[0], a.name, defval)
else:
code_decl += " %s %s;\n" % (amapping[0], a.name)
if not code_args.endswith("("):
code_args += ", "
code_args += amp + a.name
code_args += ")"
if self.isconstructor:
code_decl += " pyopencv_%s_t* self = 0;\n" % selfinfo.name
if selfinfo.issimple:
templ_prelude = gen_template_simple_call_constructor_prelude
templ = gen_template_simple_call_constructor
else:
templ_prelude = gen_template_call_constructor_prelude
templ = gen_template_call_constructor
code_prelude = templ_prelude.substitute(name=selfinfo.name, cname=selfinfo.cname)
code_fcall = templ.substitute(name=selfinfo.name, cname=selfinfo.cname, args=code_args)
else:
code_prelude = ""
code_fcall = ""
if v.rettype:
code_decl += " " + v.rettype + " retval;\n"
code_fcall += "retval = "
if ismethod:
code_fcall += "_self_->" + self.cname
else:
code_fcall += self.cname
code_fcall += code_args
if code_cvt_list:
code_cvt_list = [""] + code_cvt_list
# add info about return value, if any, to all_cargs. if there non-void return value,
# it is encoded in v.py_outlist as ("retval", -1) pair.
# As [-1] in Python accesses the last element of a list, we automatically handle the return value by
# adding the necessary info to the end of all_cargs list.
if v.rettype:
tp = v.rettype
tp1 = tp.replace("*", "_ptr")
amapping = simple_argtype_mapping.get(tp, (tp, "O", "0"))
all_cargs.append(amapping)
if v.args and v.py_arglist:
# form the format spec for PyArg_ParseTupleAndKeywords
fmtspec = "".join([all_cargs[argno][0][1] for aname, argno in v.py_arglist])
if v.py_noptargs > 0:
fmtspec = fmtspec[:-v.py_noptargs] + "|" + fmtspec[-v.py_noptargs:]
fmtspec += ":" + fullname
# form the argument parse code that:
# - declares the list of keyword parameters
# - calls PyArg_ParseTupleAndKeywords
# - converts complex arguments from PyObject's to native OpenCV types
code_parse = gen_template_parse_args.substitute(
kw_list = ", ".join(['"' + aname + '"' for aname, argno in v.py_arglist]),
fmtspec = fmtspec,
parse_arglist = ", ".join(["&" + all_cargs[argno][1] for aname, argno in v.py_arglist]),
code_cvt = " &&\n ".join(code_cvt_list))
else:
code_parse = "if(PyObject_Size(args) == 0 && (kw == NULL || PyObject_Size(kw) == 0))"
if len(v.py_outlist) == 0:
code_ret = "Py_RETURN_NONE"
elif len(v.py_outlist) == 1:
if self.isconstructor:
code_ret = "return (PyObject*)self"
else:
aname, argno = v.py_outlist[0]
code_ret = "return pyopencv_from(%s)" % (aname,)
else:
# ther is more than 1 return parameter; form the tuple out of them
fmtspec = "N"*len(v.py_outlist)
backcvt_arg_list = []
for aname, argno in v.py_outlist:
amapping = all_cargs[argno][0]
backcvt_arg_list.append("%s(%s)" % (amapping[2], aname))
code_ret = "return Py_BuildValue(\"(%s)\", %s)" % \
(fmtspec, ", ".join(["pyopencv_from(" + aname + ")" for aname, argno in v.py_outlist]))
all_code_variants.append(gen_template_func_body.substitute(code_decl=code_decl,
code_parse=code_parse, code_prelude=code_prelude, code_fcall=code_fcall, code_ret=code_ret))
if len(all_code_variants)==1:
# if the function/method has only 1 signature, then just put it
code += all_code_variants[0]
else:
# try to execute each signature
code += " PyErr_Clear();\n\n".join([" {\n" + v + " }\n" for v in all_code_variants])
code += "\n return NULL;\n}\n\n"
return code
class PythonWrapperGenerator(object):
def __init__(self):
self.clear()
def clear(self):
self.classes = {}
self.funcs = {}
self.consts = {}
self.code_types = StringIO()
self.code_funcs = StringIO()
self.code_func_tab = StringIO()
self.code_type_reg = StringIO()
self.code_const_reg = StringIO()
self.class_idx = 0
def add_class(self, stype, name, decl):
classinfo = ClassInfo(name, decl)
classinfo.decl_idx = self.class_idx
self.class_idx += 1
if classinfo.name in self.classes:
print("Generator error: class %s (cname=%s) already exists" \
% (classinfo.name, classinfo.cname))
sys.exit(-1)
self.classes[classinfo.name] = classinfo
if classinfo.bases and not classinfo.isalgorithm:
classinfo.isalgorithm = self.classes[classinfo.bases[0]].isalgorithm
def add_const(self, name, decl):
constinfo = ConstInfo(name, decl[1])
if constinfo.name in self.consts:
print("Generator error: constant %s (cname=%s) already exists" \
% (constinfo.name, constinfo.cname))
sys.exit(-1)
self.consts[constinfo.name] = constinfo
def add_func(self, decl):
classname = bareclassname = ""
name = decl[0]
dpos = name.rfind(".")
if dpos >= 0 and name[:dpos] != "cv":
classname = bareclassname = re.sub(r"^cv\.", "", name[:dpos])
name = name[dpos+1:]
dpos = classname.rfind(".")
if dpos >= 0:
bareclassname = classname[dpos+1:]
classname = classname.replace(".", "_")
cname = name
name = re.sub(r"^cv\.", "", name)
isconstructor = cname == bareclassname
cname = cname.replace(".", "::")
isclassmethod = False
customname = False
for m in decl[2]:
if m == "/S":
isclassmethod = True
elif m.startswith("="):
name = m[1:]
customname = True
func_map = self.funcs
if not classname or isconstructor:
pass
elif isclassmethod:
if not customname:
name = classname + "_" + name
cname = classname + "::" + cname
classname = ""
else:
classinfo = self.classes.get(classname, ClassInfo(""))
if not classinfo.name:
print("Generator error: the class for method %s is missing" % (name,))
sys.exit(-1)
func_map = classinfo.methods
func = func_map.get(name, FuncInfo(classname, name, cname, isconstructor))
func.add_variant(decl)
if len(func.variants) == 1:
func_map[name] = func
def gen_const_reg(self, constinfo):
self.code_const_reg.write("PUBLISH2(%s,%s);\n" % (constinfo.name, constinfo.cname))
def save(self, path, name, buf):
f = open(path + "/" + name, "wt")
f.write(buf.getvalue())
f.close()
def gen(self, srcfiles, output_path):
self.clear()
parser = hdr_parser.CppHeaderParser()
# step 1: scan the headers and build more descriptive maps of classes, consts, functions
for hdr in srcfiles:
decls = parser.parse(hdr)
for decl in decls:
name = decl[0]
if name.startswith("struct") or name.startswith("class"):
# class/struct
p = name.find(" ")
stype = name[:p]
name = name[p+1:].strip()
self.add_class(stype, name, decl)
elif name.startswith("const"):
# constant
self.add_const(name.replace("const ", "").strip(), decl)
else:
# function
self.add_func(decl)
# step 2: generate code for the classes and their methods
classlist = list(self.classes.items())
classlist.sort()
for name, classinfo in classlist:
if classinfo.ismap:
self.code_types.write(gen_template_map_type_cvt.substitute(name=name, cname=classinfo.cname))
else:
if classinfo.issimple:
templ = gen_template_simple_type_decl
else:
templ = gen_template_type_decl
self.code_types.write(templ.substitute(name=name, wname=classinfo.wname, cname=classinfo.cname,
cname1=("cv::Algorithm" if classinfo.isalgorithm else classinfo.cname)))
# register classes in the same order as they have been declared.
# this way, base classes will be registered in Python before their derivatives.
classlist1 = [(classinfo.decl_idx, name, classinfo) for name, classinfo in classlist]
classlist1.sort()
for decl_idx, name, classinfo in classlist1:
code = classinfo.gen_code(self.classes)
self.code_types.write(code)
if not classinfo.ismap:
self.code_type_reg.write("MKTYPE2(%s);\n" % (classinfo.name,) )
# step 3: generate the code for all the global functions
funclist = list(self.funcs.items())
funclist.sort()
for name, func in funclist:
code = func.gen_code(self.classes)
self.code_funcs.write(code)
self.code_func_tab.write(func.get_tab_entry())
# step 4: generate the code for constants
constlist = list(self.consts.items())
constlist.sort()
for name, constinfo in constlist:
self.gen_const_reg(constinfo)
# That's it. Now save all the files
self.save(output_path, "pyopencv_generated_funcs.h", self.code_funcs)
self.save(output_path, "pyopencv_generated_func_tab.h", self.code_func_tab)
self.save(output_path, "pyopencv_generated_const_reg.h", self.code_const_reg)
self.save(output_path, "pyopencv_generated_types.h", self.code_types)
self.save(output_path, "pyopencv_generated_type_reg.h", self.code_type_reg)
if __name__ == "__main__":
srcfiles = hdr_parser.opencv_hdr_list
dstdir = "/Users/vp/tmp"
if len(sys.argv) > 1:
dstdir = sys.argv[1]
if len(sys.argv) > 2:
srcfiles = sys.argv[2:]
generator = PythonWrapperGenerator()
generator.gen(srcfiles, dstdir)