912 lines
33 KiB
C++
912 lines
33 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////// GpuMat ////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
|
{
|
|
if (size_.height > 0 && size_.width > 0)
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, const Scalar& s_) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
|
{
|
|
if (rows_ > 0 && cols_ > 0)
|
|
{
|
|
create(rows_, cols_, type_);
|
|
*this = s_;
|
|
}
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_, const Scalar& s_) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
|
{
|
|
if (size_.height > 0 && size_.width > 0)
|
|
{
|
|
create(size_.height, size_.width, type_);
|
|
*this = s_;
|
|
}
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m) :
|
|
flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
|
|
{
|
|
if (refcount)
|
|
CV_XADD(refcount, 1);
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
|
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0),
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
{
|
|
size_t minstep = cols * elemSize();
|
|
if (step == Mat::AUTO_STEP)
|
|
{
|
|
step = minstep;
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
}
|
|
else
|
|
{
|
|
if (rows == 1) step = minstep;
|
|
CV_DbgAssert( step >= minstep );
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
}
|
|
dataend += step * (rows - 1) + minstep;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
|
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
|
|
step(step_), data((uchar*)data_), refcount(0),
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
{
|
|
size_t minstep = cols * elemSize();
|
|
if (step == Mat::AUTO_STEP)
|
|
{
|
|
step = minstep;
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
}
|
|
else
|
|
{
|
|
if (rows == 1) step = minstep;
|
|
CV_DbgAssert( step >= minstep );
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
}
|
|
dataend += step * (rows - 1) + minstep;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange)
|
|
{
|
|
flags = m.flags;
|
|
step = m.step; refcount = m.refcount;
|
|
data = m.data; datastart = m.datastart; dataend = m.dataend;
|
|
|
|
if (rowRange == Range::all())
|
|
rows = m.rows;
|
|
else
|
|
{
|
|
CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows );
|
|
rows = rowRange.size();
|
|
data += step*rowRange.start;
|
|
}
|
|
|
|
if (colRange == Range::all())
|
|
cols = m.cols;
|
|
else
|
|
{
|
|
CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols );
|
|
cols = colRange.size();
|
|
data += colRange.start*elemSize();
|
|
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
}
|
|
|
|
if( rows == 1 )
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
if( refcount )
|
|
CV_XADD(refcount, 1);
|
|
if( rows <= 0 || cols <= 0 )
|
|
rows = cols = 0;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, const Rect& roi) :
|
|
flags(m.flags), rows(roi.height), cols(roi.width),
|
|
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
|
|
datastart(m.datastart), dataend(m.dataend)
|
|
{
|
|
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
data += roi.x*elemSize();
|
|
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
|
|
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
|
|
if( refcount )
|
|
CV_XADD(refcount, 1);
|
|
if( rows <= 0 || cols <= 0 )
|
|
rows = cols = 0;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const Mat& m) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
|
{
|
|
upload(m);
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
|
|
{
|
|
if( this != &m )
|
|
{
|
|
if( m.refcount )
|
|
CV_XADD(m.refcount, 1);
|
|
release();
|
|
flags = m.flags;
|
|
rows = m.rows; cols = m.cols;
|
|
step = m.step; data = m.data;
|
|
datastart = m.datastart; dataend = m.dataend;
|
|
refcount = m.refcount;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::operator = (const Mat& m)
|
|
{
|
|
upload(m); return *this;
|
|
}
|
|
|
|
cv::gpu::GpuMat::operator Mat() const
|
|
{
|
|
Mat m;
|
|
download(m);
|
|
return m;
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::row(int y) const
|
|
{
|
|
return GpuMat(*this, Range(y, y+1), Range::all());
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::col(int x) const
|
|
{
|
|
return GpuMat(*this, Range::all(), Range(x, x+1));
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::rowRange(int startrow, int endrow) const
|
|
{
|
|
return GpuMat(*this, Range(startrow, endrow), Range::all());
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::rowRange(const Range& r) const
|
|
{
|
|
return GpuMat(*this, r, Range::all());
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::colRange(int startcol, int endcol) const
|
|
{
|
|
return GpuMat(*this, Range::all(), Range(startcol, endcol));
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::colRange(const Range& r) const
|
|
{
|
|
return GpuMat(*this, Range::all(), r);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::create(Size size_, int type_)
|
|
{
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::swap(GpuMat& b)
|
|
{
|
|
std::swap( flags, b.flags );
|
|
std::swap( rows, b.rows );
|
|
std::swap( cols, b.cols );
|
|
std::swap( step, b.step );
|
|
std::swap( data, b.data );
|
|
std::swap( datastart, b.datastart );
|
|
std::swap( dataend, b.dataend );
|
|
std::swap( refcount, b.refcount );
|
|
}
|
|
|
|
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
|
|
{
|
|
size_t esz = elemSize(), minstep;
|
|
ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart;
|
|
CV_DbgAssert( step > 0 );
|
|
if( delta1 == 0 )
|
|
ofs.x = ofs.y = 0;
|
|
else
|
|
{
|
|
ofs.y = (int)(delta1/step);
|
|
ofs.x = (int)((delta1 - step*ofs.y)/esz);
|
|
CV_DbgAssert( data == datastart + ofs.y*step + ofs.x*esz );
|
|
}
|
|
minstep = (ofs.x + cols)*esz;
|
|
wholeSize.height = (int)((delta2 - minstep)/step + 1);
|
|
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
|
|
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
|
|
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
|
|
{
|
|
Size wholeSize; Point ofs;
|
|
size_t esz = elemSize();
|
|
locateROI( wholeSize, ofs );
|
|
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
|
|
rows = row2 - row1; cols = col2 - col1;
|
|
if( esz*cols == step || rows == 1 )
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
else
|
|
flags &= ~Mat::CONTINUOUS_FLAG;
|
|
return *this;
|
|
}
|
|
|
|
cv::gpu::GpuMat GpuMat::operator()(Range rowRange, Range colRange) const
|
|
{
|
|
return GpuMat(*this, rowRange, colRange);
|
|
}
|
|
|
|
cv::gpu::GpuMat GpuMat::operator()(const Rect& roi) const
|
|
{
|
|
return GpuMat(*this, roi);
|
|
}
|
|
|
|
bool cv::gpu::GpuMat::isContinuous() const
|
|
{
|
|
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
|
}
|
|
|
|
size_t cv::gpu::GpuMat::elemSize() const
|
|
{
|
|
return CV_ELEM_SIZE(flags);
|
|
}
|
|
|
|
size_t cv::gpu::GpuMat::elemSize1() const
|
|
{
|
|
return CV_ELEM_SIZE1(flags);
|
|
}
|
|
|
|
int cv::gpu::GpuMat::type() const
|
|
{
|
|
return CV_MAT_TYPE(flags);
|
|
}
|
|
|
|
int cv::gpu::GpuMat::depth() const
|
|
{
|
|
return CV_MAT_DEPTH(flags);
|
|
}
|
|
|
|
int cv::gpu::GpuMat::channels() const
|
|
{
|
|
return CV_MAT_CN(flags);
|
|
}
|
|
|
|
Size cv::gpu::GpuMat::size() const
|
|
{
|
|
return Size(cols, rows);
|
|
}
|
|
|
|
unsigned char* cv::gpu::GpuMat::ptr(int y)
|
|
{
|
|
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
|
return data + step*y;
|
|
}
|
|
|
|
const unsigned char* cv::gpu::GpuMat::ptr(int y) const
|
|
{
|
|
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
|
return data + step*y;
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::t() const
|
|
{
|
|
GpuMat tmp;
|
|
transpose(*this, tmp);
|
|
return tmp;
|
|
}
|
|
|
|
GpuMat cv::gpu::createContinuous(int rows, int cols, int type)
|
|
{
|
|
GpuMat m;
|
|
createContinuous(rows, cols, type, m);
|
|
return m;
|
|
}
|
|
|
|
void cv::gpu::createContinuous(Size size, int type, GpuMat& m)
|
|
{
|
|
createContinuous(size.height, size.width, type, m);
|
|
}
|
|
|
|
GpuMat cv::gpu::createContinuous(Size size, int type)
|
|
{
|
|
GpuMat m;
|
|
createContinuous(size, type, m);
|
|
return m;
|
|
}
|
|
|
|
void cv::gpu::ensureSizeIsEnough(Size size, int type, GpuMat& m)
|
|
{
|
|
ensureSizeIsEnough(size.height, size.width, type, m);
|
|
}
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::GpuMat::upload(const Mat&) { throw_nogpu(); }
|
|
void cv::gpu::GpuMat::download(cv::Mat&) const { throw_nogpu(); }
|
|
void cv::gpu::GpuMat::copyTo(GpuMat&) const { throw_nogpu(); }
|
|
void cv::gpu::GpuMat::copyTo(GpuMat&, const GpuMat&) const { throw_nogpu(); }
|
|
void cv::gpu::GpuMat::convertTo(GpuMat&, int, double, double) const { throw_nogpu(); }
|
|
GpuMat& cv::gpu::GpuMat::operator = (const Scalar&) { throw_nogpu(); return *this; }
|
|
GpuMat& cv::gpu::GpuMat::setTo(const Scalar&, const GpuMat&) { throw_nogpu(); return *this; }
|
|
GpuMat cv::gpu::GpuMat::reshape(int, int) const { throw_nogpu(); return GpuMat(); }
|
|
void cv::gpu::GpuMat::create(int, int, int) { throw_nogpu(); }
|
|
void cv::gpu::GpuMat::release() {}
|
|
void cv::gpu::createContinuous(int, int, int, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::ensureSizeIsEnough(int, int, int, GpuMat&) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0);
|
|
|
|
template <typename T>
|
|
void set_to_gpu(const DevMem2D& mat, const T* scalar, int channels, cudaStream_t stream);
|
|
template <typename T>
|
|
void set_to_gpu(const DevMem2D& mat, const T* scalar, const DevMem2D& mask, int channels, cudaStream_t stream);
|
|
|
|
void convert_gpu(const DevMem2D& src, int sdepth, const DevMem2D& dst, int ddepth, double alpha, double beta, cudaStream_t stream = 0);
|
|
}}}
|
|
|
|
|
|
void cv::gpu::GpuMat::upload(const Mat& m)
|
|
{
|
|
CV_DbgAssert(!m.empty());
|
|
create(m.size(), m.type());
|
|
cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
|
|
}
|
|
|
|
void cv::gpu::GpuMat::upload(const CudaMem& m, Stream& stream)
|
|
{
|
|
CV_DbgAssert(!m.empty());
|
|
stream.enqueueUpload(m, *this);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::download(cv::Mat& m) const
|
|
{
|
|
CV_DbgAssert(!this->empty());
|
|
m.create(size(), type());
|
|
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
|
|
}
|
|
|
|
void cv::gpu::GpuMat::download(CudaMem& m, Stream& stream) const
|
|
{
|
|
CV_DbgAssert(!m.empty());
|
|
stream.enqueueDownload(*this, m);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& m) const
|
|
{
|
|
CV_DbgAssert(!this->empty());
|
|
m.create(size(), type());
|
|
cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
|
|
{
|
|
if (mask.empty())
|
|
{
|
|
copyTo(mat);
|
|
}
|
|
else
|
|
{
|
|
mat.create(size(), type());
|
|
device::copy_to_with_mask(*this, mat, depth(), mask, channels());
|
|
}
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template<int n> struct NPPTypeTraits;
|
|
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
|
|
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
|
|
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
|
|
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
|
|
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
|
|
|
|
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
|
|
};
|
|
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
|
|
{
|
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
|
|
|
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
|
|
};
|
|
|
|
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
|
|
|
static void cvt(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
|
|
{
|
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
|
|
|
static void cvt(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
|
|
void convertToKernelCaller(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const
|
|
{
|
|
CV_Assert((depth() != CV_64F && CV_MAT_DEPTH(rtype) != CV_64F) ||
|
|
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
|
|
|
bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
|
|
|
|
if( rtype < 0 )
|
|
rtype = type();
|
|
else
|
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
|
|
|
|
int scn = channels();
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);
|
|
if( sdepth == ddepth && noScale )
|
|
{
|
|
copyTo(dst);
|
|
return;
|
|
}
|
|
|
|
GpuMat temp;
|
|
const GpuMat* psrc = this;
|
|
if( sdepth != ddepth && psrc == &dst )
|
|
psrc = &(temp = *this);
|
|
|
|
dst.create( size(), rtype );
|
|
|
|
if (!noScale)
|
|
device::convert_gpu(psrc->reshape(1), sdepth, dst.reshape(1), ddepth, alpha, beta);
|
|
else
|
|
{
|
|
typedef void (*convert_caller_t)(const GpuMat& src, GpuMat& dst);
|
|
static const convert_caller_t convert_callers[8][8][4] =
|
|
{
|
|
{
|
|
{0,0,0,0},
|
|
{convertToKernelCaller, convertToKernelCaller, convertToKernelCaller, convertToKernelCaller},
|
|
{NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::cvt},
|
|
{NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::cvt},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::cvt},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::cvt},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{NppCvt<CV_32F, CV_8U, nppiConvert_32f8u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller},
|
|
{0,0,0,0},
|
|
{0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}
|
|
}
|
|
};
|
|
|
|
convert_callers[sdepth][ddepth][scn-1](*psrc, dst);
|
|
}
|
|
}
|
|
|
|
GpuMat& GpuMat::operator = (const Scalar& s)
|
|
{
|
|
setTo(s);
|
|
return *this;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template<int SDEPTH, int SCN> struct NppSetFunc
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
|
|
};
|
|
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
|
|
};
|
|
|
|
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
static void set(GpuMat& src, const Scalar& s)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
Scalar_<src_t> nppS = s;
|
|
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
static void set(GpuMat& src, const Scalar& s)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
Scalar_<src_t> nppS = s;
|
|
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
void kernelSet(GpuMat& src, const Scalar& s)
|
|
{
|
|
Scalar_<T> sf = s;
|
|
device::set_to_gpu(src, sf.val, src.channels(), 0);
|
|
}
|
|
|
|
template<int SDEPTH, int SCN> struct NppSetMaskFunc
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
|
|
};
|
|
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
|
|
};
|
|
|
|
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
static void set(GpuMat& src, const Scalar& s, const GpuMat& mask)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
Scalar_<src_t> nppS = s;
|
|
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
|
|
{
|
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
|
|
|
static void set(GpuMat& src, const Scalar& s, const GpuMat& mask)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
Scalar_<src_t> nppS = s;
|
|
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
void kernelSetMask(GpuMat& src, const Scalar& s, const GpuMat& mask)
|
|
{
|
|
Scalar_<T> sf = s;
|
|
device::set_to_gpu(src, sf.val, mask, src.channels(), 0);
|
|
}
|
|
}
|
|
|
|
GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask)
|
|
{
|
|
CV_Assert(mask.type() == CV_8UC1);
|
|
|
|
CV_Assert((depth() != CV_64F) ||
|
|
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
|
|
|
CV_DbgAssert(!this->empty());
|
|
|
|
NppiSize sz;
|
|
sz.width = cols;
|
|
sz.height = rows;
|
|
|
|
if (mask.empty())
|
|
{
|
|
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
|
|
{
|
|
cudaSafeCall( cudaMemset2D(data, step, 0, cols * elemSize(), rows) );
|
|
return *this;
|
|
}
|
|
if (depth() == CV_8U)
|
|
{
|
|
int cn = channels();
|
|
|
|
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
|
|
{
|
|
int val = saturate_cast<uchar>(s[0]);
|
|
cudaSafeCall( cudaMemset2D(data, step, val, cols * elemSize(), rows) );
|
|
return *this;
|
|
}
|
|
}
|
|
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s);
|
|
static const set_caller_t set_callers[8][4] =
|
|
{
|
|
{NppSet<CV_8U, 1, nppiSet_8u_C1R>::set,kernelSet<uchar>,kernelSet<uchar>,NppSet<CV_8U, 4, nppiSet_8u_C4R>::set},
|
|
{kernelSet<schar>,kernelSet<schar>,kernelSet<schar>,kernelSet<schar>},
|
|
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::set,NppSet<CV_16U, 2, nppiSet_16u_C2R>::set,kernelSet<ushort>,NppSet<CV_16U, 4, nppiSet_16u_C4R>::set},
|
|
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::set,NppSet<CV_16S, 2, nppiSet_16s_C2R>::set,kernelSet<short>,NppSet<CV_16S, 4, nppiSet_16s_C4R>::set},
|
|
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set,kernelSet<int>,kernelSet<int>,NppSet<CV_32S, 4, nppiSet_32s_C4R>::set},
|
|
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set,kernelSet<float>,kernelSet<float>,NppSet<CV_32F, 4, nppiSet_32f_C4R>::set},
|
|
{kernelSet<double>,kernelSet<double>,kernelSet<double>,kernelSet<double>},
|
|
{0,0,0,0}
|
|
};
|
|
set_callers[depth()][channels()-1](*this, s);
|
|
}
|
|
else
|
|
{
|
|
typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, const GpuMat& mask);
|
|
static const set_caller_t set_callers[8][4] =
|
|
{
|
|
{NppSetMask<CV_8U, 1, nppiSet_8u_C1MR>::set,kernelSetMask<uchar>,kernelSetMask<uchar>,NppSetMask<CV_8U, 4, nppiSet_8u_C4MR>::set},
|
|
{kernelSetMask<schar>,kernelSetMask<schar>,kernelSetMask<schar>,kernelSetMask<schar>},
|
|
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::set,kernelSetMask<ushort>,kernelSetMask<ushort>,NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::set},
|
|
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::set,kernelSetMask<short>,kernelSetMask<short>,NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::set},
|
|
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::set,kernelSetMask<int>,kernelSetMask<int>,NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::set},
|
|
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::set,kernelSetMask<float>,kernelSetMask<float>,NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::set},
|
|
{kernelSetMask<double>,kernelSetMask<double>,kernelSetMask<double>,kernelSetMask<double>},
|
|
{0,0,0,0}
|
|
};
|
|
set_callers[depth()][channels()-1](*this, s, mask);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
|
|
{
|
|
GpuMat hdr = *this;
|
|
|
|
int cn = channels();
|
|
if( new_cn == 0 )
|
|
new_cn = cn;
|
|
|
|
int total_width = cols * cn;
|
|
|
|
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
if( new_rows != 0 && new_rows != rows )
|
|
{
|
|
int total_size = total_width * rows;
|
|
if( !isContinuous() )
|
|
CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" );
|
|
|
|
if( (unsigned)new_rows > (unsigned)total_size )
|
|
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
if( total_width * new_rows != total_size )
|
|
CV_Error( CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows" );
|
|
|
|
hdr.rows = new_rows;
|
|
hdr.step = total_width * elemSize1();
|
|
}
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
if( new_width * new_cn != total_width )
|
|
CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" );
|
|
|
|
hdr.cols = new_width;
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
return hdr;
|
|
}
|
|
|
|
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
|
|
{
|
|
_type &= TYPE_MASK;
|
|
if( rows == _rows && cols == _cols && type() == _type && data )
|
|
return;
|
|
if( data )
|
|
release();
|
|
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
|
|
if( _rows > 0 && _cols > 0 )
|
|
{
|
|
flags = Mat::MAGIC_VAL + _type;
|
|
rows = _rows;
|
|
cols = _cols;
|
|
|
|
size_t esz = elemSize();
|
|
|
|
void *dev_ptr;
|
|
cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) );
|
|
|
|
// Single row must be continuous
|
|
if (rows == 1)
|
|
step = esz * cols;
|
|
|
|
if (esz * cols == step)
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
int64 _nettosize = (int64)step*rows;
|
|
size_t nettosize = (size_t)_nettosize;
|
|
|
|
datastart = data = (uchar*)dev_ptr;
|
|
dataend = data + nettosize;
|
|
|
|
refcount = (int*)fastMalloc(sizeof(*refcount));
|
|
*refcount = 1;
|
|
}
|
|
}
|
|
|
|
void cv::gpu::GpuMat::release()
|
|
{
|
|
if( refcount && CV_XADD(refcount, -1) == 1 )
|
|
{
|
|
fastFree(refcount);
|
|
cudaSafeCall( cudaFree(datastart) );
|
|
}
|
|
data = datastart = dataend = 0;
|
|
step = rows = cols = 0;
|
|
refcount = 0;
|
|
}
|
|
|
|
void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m)
|
|
{
|
|
int area = rows * cols;
|
|
if (!m.isContinuous() || m.type() != type || m.size().area() != area)
|
|
m.create(1, area, type);
|
|
m = m.reshape(0, rows);
|
|
}
|
|
|
|
void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)
|
|
{
|
|
if (m.type() == type && m.rows >= rows && m.cols >= cols)
|
|
m = m(Rect(0, 0, cols, rows));
|
|
else
|
|
m.create(rows, cols, type);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|