2538 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2538 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| /* Haar features calculation */
 | |
| 
 | |
| #include "precomp.hpp"
 | |
| #include <stdio.h>
 | |
| #include "opencv2/core/internal.hpp"
 | |
| 
 | |
| #if CV_SSE2 || CV_SSE3
 | |
| #   if !CV_SSE4_1 && !CV_SSE4_2
 | |
| #       define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
 | |
| #       define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
 | |
| #   endif
 | |
| #endif
 | |
| 
 | |
| #if CV_AVX
 | |
| #  define CV_HAAR_USE_AVX 1
 | |
| #else
 | |
| #  if CV_SSE2 || CV_SSE3
 | |
| #    define CV_HAAR_USE_SSE 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /* these settings affect the quality of detection: change with care */
 | |
| #define CV_ADJUST_FEATURES 1
 | |
| #define CV_ADJUST_WEIGHTS  0
 | |
| 
 | |
| typedef int sumtype;
 | |
| typedef double sqsumtype;
 | |
| 
 | |
| typedef struct CvHidHaarFeature
 | |
| {
 | |
|     struct
 | |
|     {
 | |
|         sumtype *p0, *p1, *p2, *p3;
 | |
|         float weight;
 | |
|     }
 | |
|     rect[CV_HAAR_FEATURE_MAX];
 | |
| } CvHidHaarFeature;
 | |
| 
 | |
| 
 | |
| typedef struct CvHidHaarTreeNode
 | |
| {
 | |
|     CvHidHaarFeature feature;
 | |
|     float threshold;
 | |
|     int left;
 | |
|     int right;
 | |
| } CvHidHaarTreeNode;
 | |
| 
 | |
| 
 | |
| typedef struct CvHidHaarClassifier
 | |
| {
 | |
|     int count;
 | |
|     //CvHaarFeature* orig_feature;
 | |
|     CvHidHaarTreeNode* node;
 | |
|     float* alpha;
 | |
| } CvHidHaarClassifier;
 | |
| 
 | |
| 
 | |
| typedef struct CvHidHaarStageClassifier
 | |
| {
 | |
|     int  count;
 | |
|     float threshold;
 | |
|     CvHidHaarClassifier* classifier;
 | |
|     int two_rects;
 | |
| 
 | |
|     struct CvHidHaarStageClassifier* next;
 | |
|     struct CvHidHaarStageClassifier* child;
 | |
|     struct CvHidHaarStageClassifier* parent;
 | |
| } CvHidHaarStageClassifier;
 | |
| 
 | |
| 
 | |
| typedef struct CvHidHaarClassifierCascade
 | |
| {
 | |
|     int  count;
 | |
|     int  isStumpBased;
 | |
|     int  has_tilted_features;
 | |
|     int  is_tree;
 | |
|     double inv_window_area;
 | |
|     CvMat sum, sqsum, tilted;
 | |
|     CvHidHaarStageClassifier* stage_classifier;
 | |
|     sqsumtype *pq0, *pq1, *pq2, *pq3;
 | |
|     sumtype *p0, *p1, *p2, *p3;
 | |
| 
 | |
|     void** ipp_stages;
 | |
| } CvHidHaarClassifierCascade;
 | |
| 
 | |
| 
 | |
| const int icv_object_win_border = 1;
 | |
| const float icv_stage_threshold_bias = 0.0001f;
 | |
| 
 | |
| static CvHaarClassifierCascade*
 | |
| icvCreateHaarClassifierCascade( int stage_count )
 | |
| {
 | |
|     CvHaarClassifierCascade* cascade = 0;
 | |
| 
 | |
|     int block_size = sizeof(*cascade) + stage_count*sizeof(*cascade->stage_classifier);
 | |
| 
 | |
|     if( stage_count <= 0 )
 | |
|         CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );
 | |
| 
 | |
|     cascade = (CvHaarClassifierCascade*)cvAlloc( block_size );
 | |
|     memset( cascade, 0, block_size );
 | |
| 
 | |
|     cascade->stage_classifier = (CvHaarStageClassifier*)(cascade + 1);
 | |
|     cascade->flags = CV_HAAR_MAGIC_VAL;
 | |
|     cascade->count = stage_count;
 | |
| 
 | |
|     return cascade;
 | |
| }
 | |
| 
 | |
| static void
 | |
| icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade )
 | |
| {
 | |
|     if( _cascade && *_cascade )
 | |
|     {
 | |
| #ifdef HAVE_IPP
 | |
|         CvHidHaarClassifierCascade* cascade = *_cascade;
 | |
|         if( cascade->ipp_stages )
 | |
|         {
 | |
|             int i;
 | |
|             for( i = 0; i < cascade->count; i++ )
 | |
|             {
 | |
|                 if( cascade->ipp_stages[i] )
 | |
|                     ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)cascade->ipp_stages[i] );
 | |
|             }
 | |
|         }
 | |
|         cvFree( &cascade->ipp_stages );
 | |
| #endif
 | |
|         cvFree( _cascade );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* create more efficient internal representation of haar classifier cascade */
 | |
| static CvHidHaarClassifierCascade*
 | |
| icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
 | |
| {
 | |
|     CvRect* ipp_features = 0;
 | |
|     float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;
 | |
|     int* ipp_counts = 0;
 | |
| 
 | |
|     CvHidHaarClassifierCascade* out = 0;
 | |
| 
 | |
|     int i, j, k, l;
 | |
|     int datasize;
 | |
|     int total_classifiers = 0;
 | |
|     int total_nodes = 0;
 | |
|     char errorstr[1000];
 | |
|     CvHidHaarClassifier* haar_classifier_ptr;
 | |
|     CvHidHaarTreeNode* haar_node_ptr;
 | |
|     CvSize orig_window_size;
 | |
|     int has_tilted_features = 0;
 | |
|     int max_count = 0;
 | |
| 
 | |
|     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
 | |
|         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
 | |
| 
 | |
|     if( cascade->hid_cascade )
 | |
|         CV_Error( CV_StsError, "hid_cascade has been already created" );
 | |
| 
 | |
|     if( !cascade->stage_classifier )
 | |
|         CV_Error( CV_StsNullPtr, "" );
 | |
| 
 | |
|     if( cascade->count <= 0 )
 | |
|         CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );
 | |
| 
 | |
|     orig_window_size = cascade->orig_window_size;
 | |
| 
 | |
|     /* check input structure correctness and calculate total memory size needed for
 | |
|        internal representation of the classifier cascade */
 | |
|     for( i = 0; i < cascade->count; i++ )
 | |
|     {
 | |
|         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
 | |
| 
 | |
|         if( !stage_classifier->classifier ||
 | |
|             stage_classifier->count <= 0 )
 | |
|         {
 | |
|             sprintf( errorstr, "header of the stage classifier #%d is invalid "
 | |
|                      "(has null pointers or non-positive classfier count)", i );
 | |
|             CV_Error( CV_StsError, errorstr );
 | |
|         }
 | |
| 
 | |
|         max_count = MAX( max_count, stage_classifier->count );
 | |
|         total_classifiers += stage_classifier->count;
 | |
| 
 | |
|         for( j = 0; j < stage_classifier->count; j++ )
 | |
|         {
 | |
|             CvHaarClassifier* classifier = stage_classifier->classifier + j;
 | |
| 
 | |
|             total_nodes += classifier->count;
 | |
|             for( l = 0; l < classifier->count; l++ )
 | |
|             {
 | |
|                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
 | |
|                 {
 | |
|                     if( classifier->haar_feature[l].rect[k].r.width )
 | |
|                     {
 | |
|                         CvRect r = classifier->haar_feature[l].rect[k].r;
 | |
|                         int tilted = classifier->haar_feature[l].tilted;
 | |
|                         has_tilted_features |= tilted != 0;
 | |
|                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
 | |
|                             r.x + r.width > orig_window_size.width
 | |
|                             ||
 | |
|                             (!tilted &&
 | |
|                             (r.x < 0 || r.y + r.height > orig_window_size.height))
 | |
|                             ||
 | |
|                             (tilted && (r.x - r.height < 0 ||
 | |
|                             r.y + r.width + r.height > orig_window_size.height)))
 | |
|                         {
 | |
|                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
 | |
|                                      "the stage classifier #%d is not inside "
 | |
|                                      "the reference (original) cascade window", k, j, i );
 | |
|                             CV_Error( CV_StsNullPtr, errorstr );
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // this is an upper boundary for the whole hidden cascade size
 | |
|     datasize = sizeof(CvHidHaarClassifierCascade) +
 | |
|                sizeof(CvHidHaarStageClassifier)*cascade->count +
 | |
|                sizeof(CvHidHaarClassifier) * total_classifiers +
 | |
|                sizeof(CvHidHaarTreeNode) * total_nodes +
 | |
|                sizeof(void*)*(total_nodes + total_classifiers);
 | |
| 
 | |
|     out = (CvHidHaarClassifierCascade*)cvAlloc( datasize );
 | |
|     memset( out, 0, sizeof(*out) );
 | |
| 
 | |
|     /* init header */
 | |
|     out->count = cascade->count;
 | |
|     out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1);
 | |
|     haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count);
 | |
|     haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
 | |
| 
 | |
|     out->isStumpBased = 1;
 | |
|     out->has_tilted_features = has_tilted_features;
 | |
|     out->is_tree = 0;
 | |
| 
 | |
|     /* initialize internal representation */
 | |
|     for( i = 0; i < cascade->count; i++ )
 | |
|     {
 | |
|         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
 | |
|         CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
 | |
| 
 | |
|         hid_stage_classifier->count = stage_classifier->count;
 | |
|         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
 | |
|         hid_stage_classifier->classifier = haar_classifier_ptr;
 | |
|         hid_stage_classifier->two_rects = 1;
 | |
|         haar_classifier_ptr += stage_classifier->count;
 | |
| 
 | |
|         hid_stage_classifier->parent = (stage_classifier->parent == -1)
 | |
|             ? NULL : out->stage_classifier + stage_classifier->parent;
 | |
|         hid_stage_classifier->next = (stage_classifier->next == -1)
 | |
|             ? NULL : out->stage_classifier + stage_classifier->next;
 | |
|         hid_stage_classifier->child = (stage_classifier->child == -1)
 | |
|             ? NULL : out->stage_classifier + stage_classifier->child;
 | |
| 
 | |
|         out->is_tree |= hid_stage_classifier->next != NULL;
 | |
| 
 | |
|         for( j = 0; j < stage_classifier->count; j++ )
 | |
|         {
 | |
|             CvHaarClassifier* classifier = stage_classifier->classifier + j;
 | |
|             CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
 | |
|             int node_count = classifier->count;
 | |
|             float* alpha_ptr = (float*)(haar_node_ptr + node_count);
 | |
| 
 | |
|             hid_classifier->count = node_count;
 | |
|             hid_classifier->node = haar_node_ptr;
 | |
|             hid_classifier->alpha = alpha_ptr;
 | |
| 
 | |
|             for( l = 0; l < node_count; l++ )
 | |
|             {
 | |
|                 CvHidHaarTreeNode* node = hid_classifier->node + l;
 | |
|                 CvHaarFeature* feature = classifier->haar_feature + l;
 | |
|                 memset( node, -1, sizeof(*node) );
 | |
|                 node->threshold = classifier->threshold[l];
 | |
|                 node->left = classifier->left[l];
 | |
|                 node->right = classifier->right[l];
 | |
| 
 | |
|                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
 | |
|                     feature->rect[2].r.width == 0 ||
 | |
|                     feature->rect[2].r.height == 0 )
 | |
|                     memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
 | |
|                 else
 | |
|                     hid_stage_classifier->two_rects = 0;
 | |
|             }
 | |
| 
 | |
|             memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
 | |
|             haar_node_ptr =
 | |
|                 (CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
 | |
| 
 | |
|             out->isStumpBased &= node_count == 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef HAVE_IPP
 | |
|     int can_use_ipp = !out->has_tilted_features && !out->is_tree && out->isStumpBased;
 | |
| 
 | |
|     if( can_use_ipp )
 | |
|     {
 | |
|         int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
 | |
|         float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
 | |
|             (orig_window_size.height-icv_object_win_border*2)));
 | |
| 
 | |
|         out->ipp_stages = (void**)cvAlloc( ipp_datasize );
 | |
|         memset( out->ipp_stages, 0, ipp_datasize );
 | |
| 
 | |
|         ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) );
 | |
|         ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) );
 | |
|         ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) );
 | |
|         ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) );
 | |
|         ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) );
 | |
|         ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) );
 | |
| 
 | |
|         for( i = 0; i < cascade->count; i++ )
 | |
|         {
 | |
|             CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
 | |
|             for( j = 0, k = 0; j < stage_classifier->count; j++ )
 | |
|             {
 | |
|                 CvHaarClassifier* classifier = stage_classifier->classifier + j;
 | |
|                 int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
 | |
| 
 | |
|                 ipp_thresholds[j] = classifier->threshold[0];
 | |
|                 ipp_val1[j] = classifier->alpha[0];
 | |
|                 ipp_val2[j] = classifier->alpha[1];
 | |
|                 ipp_counts[j] = rect_count;
 | |
| 
 | |
|                 for( l = 0; l < rect_count; l++, k++ )
 | |
|                 {
 | |
|                     ipp_features[k] = classifier->haar_feature->rect[l].r;
 | |
|                     //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
 | |
|                     ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i],
 | |
|                 (const IppiRect*)ipp_features, ipp_weights, ipp_thresholds,
 | |
|                 ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         if( i < cascade->count )
 | |
|         {
 | |
|             for( j = 0; j < i; j++ )
 | |
|                 if( out->ipp_stages[i] )
 | |
|                     ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] );
 | |
|             cvFree( &out->ipp_stages );
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     cascade->hid_cascade = out;
 | |
|     assert( (char*)haar_node_ptr - (char*)out <= datasize );
 | |
| 
 | |
|     cvFree( &ipp_features );
 | |
|     cvFree( &ipp_weights );
 | |
|     cvFree( &ipp_thresholds );
 | |
|     cvFree( &ipp_val1 );
 | |
|     cvFree( &ipp_val2 );
 | |
|     cvFree( &ipp_counts );
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define sum_elem_ptr(sum,row,col)  \
 | |
|     ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
 | |
| 
 | |
| #define sqsum_elem_ptr(sqsum,row,col)  \
 | |
|     ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
 | |
| 
 | |
| #define calc_sum(rect,offset) \
 | |
|     ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
 | |
| 
 | |
| 
 | |
| CV_IMPL void
 | |
| cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
 | |
|                                      const CvArr* _sum,
 | |
|                                      const CvArr* _sqsum,
 | |
|                                      const CvArr* _tilted_sum,
 | |
|                                      double scale )
 | |
| {
 | |
|     CvMat sum_stub, *sum = (CvMat*)_sum;
 | |
|     CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
 | |
|     CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
 | |
|     CvHidHaarClassifierCascade* cascade;
 | |
|     int coi0 = 0, coi1 = 0;
 | |
|     int i;
 | |
|     CvRect equRect;
 | |
|     double weight_scale;
 | |
| 
 | |
|     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
 | |
|         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
 | |
| 
 | |
|     if( scale <= 0 )
 | |
|         CV_Error( CV_StsOutOfRange, "Scale must be positive" );
 | |
| 
 | |
|     sum = cvGetMat( sum, &sum_stub, &coi0 );
 | |
|     sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
 | |
| 
 | |
|     if( coi0 || coi1 )
 | |
|         CV_Error( CV_BadCOI, "COI is not supported" );
 | |
| 
 | |
|     if( !CV_ARE_SIZES_EQ( sum, sqsum ))
 | |
|         CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
 | |
| 
 | |
|     if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
 | |
|         CV_MAT_TYPE(sum->type) != CV_32SC1 )
 | |
|         CV_Error( CV_StsUnsupportedFormat,
 | |
|         "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
 | |
| 
 | |
|     if( !_cascade->hid_cascade )
 | |
|         icvCreateHidHaarClassifierCascade(_cascade);
 | |
| 
 | |
|     cascade = _cascade->hid_cascade;
 | |
| 
 | |
|     if( cascade->has_tilted_features )
 | |
|     {
 | |
|         tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
 | |
| 
 | |
|         if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
 | |
|             CV_Error( CV_StsUnsupportedFormat,
 | |
|             "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
 | |
| 
 | |
|         if( sum->step != tilted->step )
 | |
|             CV_Error( CV_StsUnmatchedSizes,
 | |
|             "Sum and tilted_sum must have the same stride (step, widthStep)" );
 | |
| 
 | |
|         if( !CV_ARE_SIZES_EQ( sum, tilted ))
 | |
|             CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
 | |
|         cascade->tilted = *tilted;
 | |
|     }
 | |
| 
 | |
|     _cascade->scale = scale;
 | |
|     _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
 | |
|     _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
 | |
| 
 | |
|     cascade->sum = *sum;
 | |
|     cascade->sqsum = *sqsum;
 | |
| 
 | |
|     equRect.x = equRect.y = cvRound(scale);
 | |
|     equRect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
 | |
|     equRect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
 | |
|     weight_scale = 1./(equRect.width*equRect.height);
 | |
|     cascade->inv_window_area = weight_scale;
 | |
| 
 | |
|     cascade->p0 = sum_elem_ptr(*sum, equRect.y, equRect.x);
 | |
|     cascade->p1 = sum_elem_ptr(*sum, equRect.y, equRect.x + equRect.width );
 | |
|     cascade->p2 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x );
 | |
|     cascade->p3 = sum_elem_ptr(*sum, equRect.y + equRect.height,
 | |
|                                      equRect.x + equRect.width );
 | |
| 
 | |
|     cascade->pq0 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x);
 | |
|     cascade->pq1 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x + equRect.width );
 | |
|     cascade->pq2 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x );
 | |
|     cascade->pq3 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height,
 | |
|                                           equRect.x + equRect.width );
 | |
| 
 | |
|     /* init pointers in haar features according to real window size and
 | |
|        given image pointers */
 | |
|     for( i = 0; i < _cascade->count; i++ )
 | |
|     {
 | |
|         int j, k, l;
 | |
|         for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|         {
 | |
|             for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
 | |
|             {
 | |
|                 CvHaarFeature* feature =
 | |
|                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
 | |
|                 /* CvHidHaarClassifier* classifier =
 | |
|                     cascade->stage_classifier[i].classifier + j; */
 | |
|                 CvHidHaarFeature* hidfeature =
 | |
|                     &cascade->stage_classifier[i].classifier[j].node[l].feature;
 | |
|                 double sum0 = 0, area0 = 0;
 | |
|                 CvRect r[3];
 | |
| 
 | |
|                 int base_w = -1, base_h = -1;
 | |
|                 int new_base_w = 0, new_base_h = 0;
 | |
|                 int kx, ky;
 | |
|                 int flagx = 0, flagy = 0;
 | |
|                 int x0 = 0, y0 = 0;
 | |
|                 int nr;
 | |
| 
 | |
|                 /* align blocks */
 | |
|                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
 | |
|                 {
 | |
|                     if( !hidfeature->rect[k].p0 )
 | |
|                         break;
 | |
|                     r[k] = feature->rect[k].r;
 | |
|                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
 | |
|                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
 | |
|                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
 | |
|                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
 | |
|                 }
 | |
| 
 | |
|                 nr = k;
 | |
| 
 | |
|                 base_w += 1;
 | |
|                 base_h += 1;
 | |
|                 kx = r[0].width / base_w;
 | |
|                 ky = r[0].height / base_h;
 | |
| 
 | |
|                 if( kx <= 0 )
 | |
|                 {
 | |
|                     flagx = 1;
 | |
|                     new_base_w = cvRound( r[0].width * scale ) / kx;
 | |
|                     x0 = cvRound( r[0].x * scale );
 | |
|                 }
 | |
| 
 | |
|                 if( ky <= 0 )
 | |
|                 {
 | |
|                     flagy = 1;
 | |
|                     new_base_h = cvRound( r[0].height * scale ) / ky;
 | |
|                     y0 = cvRound( r[0].y * scale );
 | |
|                 }
 | |
| 
 | |
|                 for( k = 0; k < nr; k++ )
 | |
|                 {
 | |
|                     CvRect tr;
 | |
|                     double correction_ratio;
 | |
| 
 | |
|                     if( flagx )
 | |
|                     {
 | |
|                         tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
 | |
|                         tr.width = r[k].width * new_base_w / base_w;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         tr.x = cvRound( r[k].x * scale );
 | |
|                         tr.width = cvRound( r[k].width * scale );
 | |
|                     }
 | |
| 
 | |
|                     if( flagy )
 | |
|                     {
 | |
|                         tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
 | |
|                         tr.height = r[k].height * new_base_h / base_h;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         tr.y = cvRound( r[k].y * scale );
 | |
|                         tr.height = cvRound( r[k].height * scale );
 | |
|                     }
 | |
| 
 | |
| #if CV_ADJUST_WEIGHTS
 | |
|                     {
 | |
|                     // RAINER START
 | |
|                     const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
 | |
|                     const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
 | |
|                     const float feature_size = float(tr.width*tr.height);
 | |
|                     //const float normSize    = float(equRect.width*equRect.height);
 | |
|                     float target_ratio = orig_feature_size / orig_norm_size;
 | |
|                     //float isRatio = featureSize / normSize;
 | |
|                     //correctionRatio = targetRatio / isRatio / normSize;
 | |
|                     correction_ratio = target_ratio / feature_size;
 | |
|                     // RAINER END
 | |
|                     }
 | |
| #else
 | |
|                     correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
 | |
| #endif
 | |
| 
 | |
|                     if( !feature->tilted )
 | |
|                     {
 | |
|                         hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);
 | |
|                         hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);
 | |
|                         hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);
 | |
|                         hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);
 | |
|                         hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,
 | |
|                                                               tr.x + tr.width - tr.height);
 | |
|                         hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);
 | |
|                         hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);
 | |
|                     }
 | |
| 
 | |
|                     hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
 | |
| 
 | |
|                     if( k == 0 )
 | |
|                         area0 = tr.width * tr.height;
 | |
|                     else
 | |
|                         sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
 | |
|                 }
 | |
| 
 | |
|                 hidfeature->rect[0].weight = (float)(-sum0/area0);
 | |
|             } /* l */
 | |
|         } /* j */
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // AVX version icvEvalHidHaarClassifier.  Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
 | |
| #ifdef CV_HAAR_USE_AVX
 | |
| CV_INLINE
 | |
| double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier,
 | |
|                                     double variance_norm_factor, size_t p_offset )
 | |
| {
 | |
|     int  CV_DECL_ALIGNED(32) idxV[8] = {0,0,0,0,0,0,0,0};
 | |
|     uchar flags[8] = {0,0,0,0,0,0,0,0};
 | |
|     CvHidHaarTreeNode* nodes[8];
 | |
|     double res = 0;
 | |
|     uchar exitConditionFlag = 0;
 | |
|     for(;;)
 | |
|     {
 | |
|         float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
 | |
|         nodes[0] = (classifier+0)->node + idxV[0];
 | |
|         nodes[1] = (classifier+1)->node + idxV[1];
 | |
|         nodes[2] = (classifier+2)->node + idxV[2];
 | |
|         nodes[3] = (classifier+3)->node + idxV[3];
 | |
|         nodes[4] = (classifier+4)->node + idxV[4];
 | |
|         nodes[5] = (classifier+5)->node + idxV[5];
 | |
|         nodes[6] = (classifier+6)->node + idxV[6];
 | |
|         nodes[7] = (classifier+7)->node + idxV[7];
 | |
| 
 | |
|         __m256 t = _mm256_set1_ps(variance_norm_factor);
 | |
| 
 | |
|         t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
 | |
|                                            nodes[6]->threshold,
 | |
|                                            nodes[5]->threshold,
 | |
|                                            nodes[4]->threshold,
 | |
|                                            nodes[3]->threshold,
 | |
|                                            nodes[2]->threshold,
 | |
|                                            nodes[1]->threshold,
 | |
|                                            nodes[0]->threshold));
 | |
| 
 | |
|         __m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[6]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[5]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[4]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[3]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[2]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[1]->feature.rect[0], p_offset),
 | |
|                                       calc_sum(nodes[0]->feature.rect[0], p_offset));
 | |
| 
 | |
|         __m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
 | |
|                                       nodes[6]->feature.rect[0].weight,
 | |
|                                       nodes[5]->feature.rect[0].weight,
 | |
|                                       nodes[4]->feature.rect[0].weight,
 | |
|                                       nodes[3]->feature.rect[0].weight,
 | |
|                                       nodes[2]->feature.rect[0].weight,
 | |
|                                       nodes[1]->feature.rect[0].weight,
 | |
|                                       nodes[0]->feature.rect[0].weight);
 | |
| 
 | |
|         __m256 sum = _mm256_mul_ps(offset, weight);
 | |
| 
 | |
|         offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[6]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[5]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[4]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[3]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[2]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[1]->feature.rect[1], p_offset),
 | |
|                                calc_sum(nodes[0]->feature.rect[1], p_offset));
 | |
| 
 | |
|         weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
 | |
|                                nodes[6]->feature.rect[1].weight,
 | |
|                                nodes[5]->feature.rect[1].weight,
 | |
|                                nodes[4]->feature.rect[1].weight,
 | |
|                                nodes[3]->feature.rect[1].weight,
 | |
|                                nodes[2]->feature.rect[1].weight,
 | |
|                                nodes[1]->feature.rect[1].weight,
 | |
|                                nodes[0]->feature.rect[1].weight);
 | |
| 
 | |
|         sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
 | |
| 
 | |
|         if( nodes[0]->feature.rect[2].p0 )
 | |
|             tmp[0] = calc_sum(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight;
 | |
|         if( nodes[1]->feature.rect[2].p0 )
 | |
|             tmp[1] = calc_sum(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight;
 | |
|         if( nodes[2]->feature.rect[2].p0 )
 | |
|             tmp[2] = calc_sum(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight;
 | |
|         if( nodes[3]->feature.rect[2].p0 )
 | |
|             tmp[3] = calc_sum(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight;
 | |
|         if( nodes[4]->feature.rect[2].p0 )
 | |
|             tmp[4] = calc_sum(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight;
 | |
|         if( nodes[5]->feature.rect[2].p0 )
 | |
|             tmp[5] = calc_sum(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight;
 | |
|         if( nodes[6]->feature.rect[2].p0 )
 | |
|             tmp[6] = calc_sum(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight;
 | |
|         if( nodes[7]->feature.rect[2].p0 )
 | |
|             tmp[7] = calc_sum(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight;
 | |
| 
 | |
|         sum = _mm256_add_ps(sum,_mm256_load_ps(tmp));
 | |
| 
 | |
|         __m256 left  = _mm256_set_ps(nodes[7]->left, nodes[6]->left, nodes[5]->left, nodes[4]->left, nodes[3]->left, nodes[2]->left, nodes[1]->left, nodes[0]->left );
 | |
|         __m256 right = _mm256_set_ps(nodes[7]->right,nodes[6]->right,nodes[5]->right,nodes[4]->right,nodes[3]->right,nodes[2]->right,nodes[1]->right,nodes[0]->right);
 | |
| 
 | |
|         _mm256_store_si256((__m256i*)idxV, _mm256_cvttps_epi32(_mm256_blendv_ps(right, left, _mm256_cmp_ps(sum, t, _CMP_LT_OQ))));
 | |
| 
 | |
|         for(int i = 0; i < 8; i++)
 | |
|         {
 | |
|             if(idxV[i]<=0)
 | |
|             {
 | |
|                 if(!flags[i])
 | |
|                 {
 | |
|                     exitConditionFlag++;
 | |
|                     flags[i] = 1;
 | |
|                     res += (classifier+i)->alpha[-idxV[i]];
 | |
|                 }
 | |
|                 idxV[i]=0;
 | |
|             }
 | |
|         }
 | |
|         if(exitConditionFlag == 8)
 | |
|             return res;
 | |
|     }
 | |
| }
 | |
| #endif //CV_HAAR_USE_AVX
 | |
| 
 | |
| CV_INLINE
 | |
| double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,
 | |
|                                  double variance_norm_factor,
 | |
|                                  size_t p_offset )
 | |
| {
 | |
|     int idx = 0;
 | |
|     /*#if CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX
 | |
|         if(cv::checkHardwareSupport(CV_CPU_SSE2))//based on old SSE variant. Works slow
 | |
|         {
 | |
|             double CV_DECL_ALIGNED(16) temp[2];
 | |
|             __m128d zero = _mm_setzero_pd();
 | |
|             do
 | |
|             {
 | |
|                 CvHidHaarTreeNode* node = classifier->node + idx;
 | |
|                 __m128d t = _mm_set1_pd((node->threshold)*variance_norm_factor);
 | |
|                 __m128d left = _mm_set1_pd(node->left);
 | |
|                 __m128d right = _mm_set1_pd(node->right);
 | |
| 
 | |
|                 double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                 _sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                 if( node->feature.rect[2].p0 )
 | |
|                     _sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
 | |
| 
 | |
|                 __m128d sum = _mm_set1_pd(_sum);
 | |
|                 t = _mm_cmplt_sd(sum, t);
 | |
|                 sum = _mm_blendv_pd(right, left, t);
 | |
| 
 | |
|                 _mm_store_pd(temp, sum);
 | |
|                 idx = (int)temp[0];
 | |
|             }
 | |
|             while(idx > 0 );
 | |
| 
 | |
|         }
 | |
|         else
 | |
|     #endif*/
 | |
|     {
 | |
|         do
 | |
|         {
 | |
|             CvHidHaarTreeNode* node = classifier->node + idx;
 | |
|             double t = node->threshold * variance_norm_factor;
 | |
| 
 | |
|             double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|             sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
| 
 | |
|             if( node->feature.rect[2].p0 )
 | |
|                 sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
 | |
| 
 | |
|             idx = sum < t ? node->left : node->right;
 | |
|         }
 | |
|         while( idx > 0 );
 | |
|     }
 | |
|     return classifier->alpha[-idx];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int
 | |
| cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
 | |
|                                CvPoint pt, double& stage_sum, int start_stage )
 | |
| {
 | |
| #ifdef CV_HAAR_USE_AVX
 | |
|     bool haveAVX = false;
 | |
|     if(cv::checkHardwareSupport(CV_CPU_AVX))
 | |
|     if(__xgetbv()&0x6)// Check if the OS will save the YMM registers
 | |
|        haveAVX = true;
 | |
| #else
 | |
| #  ifdef CV_HAAR_USE_SSE
 | |
|     bool haveSSE2 = cv::checkHardwareSupport(CV_CPU_SSE2);
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
|     int p_offset, pq_offset;
 | |
|     int i, j;
 | |
|     double mean, variance_norm_factor;
 | |
|     CvHidHaarClassifierCascade* cascade;
 | |
| 
 | |
|     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
 | |
|         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
 | |
| 
 | |
|     cascade = _cascade->hid_cascade;
 | |
|     if( !cascade )
 | |
|         CV_Error( CV_StsNullPtr, "Hidden cascade has not been created.\n"
 | |
|             "Use cvSetImagesForHaarClassifierCascade" );
 | |
| 
 | |
|     if( pt.x < 0 || pt.y < 0 ||
 | |
|         pt.x + _cascade->real_window_size.width >= cascade->sum.width ||
 | |
|         pt.y + _cascade->real_window_size.height >= cascade->sum.height )
 | |
|         return -1;
 | |
| 
 | |
|     p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
 | |
|     pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
 | |
|     mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area;
 | |
|     variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] -
 | |
|                            cascade->pq2[pq_offset] + cascade->pq3[pq_offset];
 | |
|     variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean;
 | |
|     if( variance_norm_factor >= 0. )
 | |
|         variance_norm_factor = sqrt(variance_norm_factor);
 | |
|     else
 | |
|         variance_norm_factor = 1.;
 | |
| 
 | |
|     if( cascade->is_tree )
 | |
|     {
 | |
|         CvHidHaarStageClassifier* ptr = cascade->stage_classifier;
 | |
|         assert( start_stage == 0 );
 | |
| 
 | |
|         while( ptr )
 | |
|         {
 | |
|             stage_sum = 0.0;
 | |
|             j = 0;
 | |
| 
 | |
| #ifdef CV_HAAR_USE_AVX
 | |
|             if(haveAVX)
 | |
|             {
 | |
|                 for( ; j <= ptr->count - 8; j += 8 )
 | |
|                 {
 | |
|                     stage_sum += icvEvalHidHaarClassifierAVX(
 | |
|                         ptr->classifier + j,
 | |
|                         variance_norm_factor, p_offset );
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|             for( ; j < ptr->count; j++ )
 | |
|             {
 | |
|                 stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j, variance_norm_factor, p_offset );
 | |
|             }
 | |
| 
 | |
|             if( stage_sum >= ptr->threshold )
 | |
|             {
 | |
|                 ptr = ptr->child;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 while( ptr && ptr->next == NULL ) ptr = ptr->parent;
 | |
|                 if( ptr == NULL )
 | |
|                     return 0;
 | |
|                 ptr = ptr->next;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else if( cascade->isStumpBased )
 | |
|     {
 | |
| #ifdef CV_HAAR_USE_AVX
 | |
|         if(haveAVX)
 | |
|         {
 | |
|             CvHidHaarClassifier* classifiers[8];
 | |
|             CvHidHaarTreeNode* nodes[8];
 | |
|             for( i = start_stage; i < cascade->count; i++ )
 | |
|             {
 | |
|                 stage_sum = 0.0;
 | |
|                 j = 0;
 | |
|                 float CV_DECL_ALIGNED(32) buf[8];
 | |
|                 if( cascade->stage_classifier[i].two_rects )
 | |
|                 {
 | |
|                     for( ; j <= cascade->stage_classifier[i].count - 8; j += 8 )
 | |
|                     {
 | |
|                         classifiers[0] = cascade->stage_classifier[i].classifier + j;
 | |
|                         nodes[0] = classifiers[0]->node;
 | |
|                         classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
 | |
|                         nodes[1] = classifiers[1]->node;
 | |
|                         classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
 | |
|                         nodes[2] = classifiers[2]->node;
 | |
|                         classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
 | |
|                         nodes[3] = classifiers[3]->node;
 | |
|                         classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
 | |
|                         nodes[4] = classifiers[4]->node;
 | |
|                         classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
 | |
|                         nodes[5] = classifiers[5]->node;
 | |
|                         classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
 | |
|                         nodes[6] = classifiers[6]->node;
 | |
|                         classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
 | |
|                         nodes[7] = classifiers[7]->node;
 | |
| 
 | |
|                         __m256 t = _mm256_set1_ps(variance_norm_factor);
 | |
|                         t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
 | |
|                                                            nodes[6]->threshold,
 | |
|                                                            nodes[5]->threshold,
 | |
|                                                            nodes[4]->threshold,
 | |
|                                                            nodes[3]->threshold,
 | |
|                                                            nodes[2]->threshold,
 | |
|                                                            nodes[1]->threshold,
 | |
|                                                            nodes[0]->threshold));
 | |
| 
 | |
|                         __m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[6]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[5]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[4]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[3]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[2]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[1]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[0]->feature.rect[0], p_offset));
 | |
| 
 | |
|                         __m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
 | |
|                                                       nodes[6]->feature.rect[0].weight,
 | |
|                                                       nodes[5]->feature.rect[0].weight,
 | |
|                                                       nodes[4]->feature.rect[0].weight,
 | |
|                                                       nodes[3]->feature.rect[0].weight,
 | |
|                                                       nodes[2]->feature.rect[0].weight,
 | |
|                                                       nodes[1]->feature.rect[0].weight,
 | |
|                                                       nodes[0]->feature.rect[0].weight);
 | |
| 
 | |
|                         __m256 sum = _mm256_mul_ps(offset, weight);
 | |
| 
 | |
|                         offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[6]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[5]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[4]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[3]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[2]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[1]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[0]->feature.rect[1], p_offset));
 | |
| 
 | |
|                         weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
 | |
|                                                nodes[6]->feature.rect[1].weight,
 | |
|                                                nodes[5]->feature.rect[1].weight,
 | |
|                                                nodes[4]->feature.rect[1].weight,
 | |
|                                                nodes[3]->feature.rect[1].weight,
 | |
|                                                nodes[2]->feature.rect[1].weight,
 | |
|                                                nodes[1]->feature.rect[1].weight,
 | |
|                                                nodes[0]->feature.rect[1].weight);
 | |
| 
 | |
|                         sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
 | |
| 
 | |
|                         __m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],
 | |
|                                                       classifiers[6]->alpha[0],
 | |
|                                                       classifiers[5]->alpha[0],
 | |
|                                                       classifiers[4]->alpha[0],
 | |
|                                                       classifiers[3]->alpha[0],
 | |
|                                                       classifiers[2]->alpha[0],
 | |
|                                                       classifiers[1]->alpha[0],
 | |
|                                                       classifiers[0]->alpha[0]);
 | |
|                         __m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],
 | |
|                                                       classifiers[6]->alpha[1],
 | |
|                                                       classifiers[5]->alpha[1],
 | |
|                                                       classifiers[4]->alpha[1],
 | |
|                                                       classifiers[3]->alpha[1],
 | |
|                                                       classifiers[2]->alpha[1],
 | |
|                                                       classifiers[1]->alpha[1],
 | |
|                                                       classifiers[0]->alpha[1]);
 | |
| 
 | |
|                         _mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ)));
 | |
|                         stage_sum += (buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
 | |
|                     }
 | |
| 
 | |
|                     for( ; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
| 
 | |
|                         double t = node->threshold*variance_norm_factor;
 | |
|                         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                         stage_sum += classifier->alpha[sum >= t];
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for( ; j <= (cascade->stage_classifier[i].count)-8; j+=8 )
 | |
|                     {
 | |
|                         float  CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
 | |
| 
 | |
|                         classifiers[0] = cascade->stage_classifier[i].classifier + j;
 | |
|                         nodes[0] = classifiers[0]->node;
 | |
|                         classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
 | |
|                         nodes[1] = classifiers[1]->node;
 | |
|                         classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
 | |
|                         nodes[2] = classifiers[2]->node;
 | |
|                         classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
 | |
|                         nodes[3] = classifiers[3]->node;
 | |
|                         classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
 | |
|                         nodes[4] = classifiers[4]->node;
 | |
|                         classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
 | |
|                         nodes[5] = classifiers[5]->node;
 | |
|                         classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
 | |
|                         nodes[6] = classifiers[6]->node;
 | |
|                         classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
 | |
|                         nodes[7] = classifiers[7]->node;
 | |
| 
 | |
|                         __m256 t = _mm256_set1_ps(variance_norm_factor);
 | |
| 
 | |
|                         t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
 | |
|                                                            nodes[6]->threshold,
 | |
|                                                            nodes[5]->threshold,
 | |
|                                                            nodes[4]->threshold,
 | |
|                                                            nodes[3]->threshold,
 | |
|                                                            nodes[2]->threshold,
 | |
|                                                            nodes[1]->threshold,
 | |
|                                                            nodes[0]->threshold));
 | |
| 
 | |
|                         __m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[6]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[5]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[4]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[3]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[2]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[1]->feature.rect[0], p_offset),
 | |
|                                                       calc_sum(nodes[0]->feature.rect[0], p_offset));
 | |
| 
 | |
|                         __m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
 | |
|                                                       nodes[6]->feature.rect[0].weight,
 | |
|                                                       nodes[5]->feature.rect[0].weight,
 | |
|                                                       nodes[4]->feature.rect[0].weight,
 | |
|                                                       nodes[3]->feature.rect[0].weight,
 | |
|                                                       nodes[2]->feature.rect[0].weight,
 | |
|                                                       nodes[1]->feature.rect[0].weight,
 | |
|                                                       nodes[0]->feature.rect[0].weight);
 | |
| 
 | |
|                         __m256 sum = _mm256_mul_ps(offset, weight);
 | |
| 
 | |
|                         offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[6]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[5]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[4]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[3]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[2]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[1]->feature.rect[1], p_offset),
 | |
|                                                calc_sum(nodes[0]->feature.rect[1], p_offset));
 | |
| 
 | |
|                         weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
 | |
|                                                nodes[6]->feature.rect[1].weight,
 | |
|                                                nodes[5]->feature.rect[1].weight,
 | |
|                                                nodes[4]->feature.rect[1].weight,
 | |
|                                                nodes[3]->feature.rect[1].weight,
 | |
|                                                nodes[2]->feature.rect[1].weight,
 | |
|                                                nodes[1]->feature.rect[1].weight,
 | |
|                                                nodes[0]->feature.rect[1].weight);
 | |
| 
 | |
|                         sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
 | |
| 
 | |
|                         if( nodes[0]->feature.rect[2].p0 )
 | |
|                             tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
 | |
|                         if( nodes[1]->feature.rect[2].p0 )
 | |
|                             tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
 | |
|                         if( nodes[2]->feature.rect[2].p0 )
 | |
|                             tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
 | |
|                         if( nodes[3]->feature.rect[2].p0 )
 | |
|                             tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
 | |
|                         if( nodes[4]->feature.rect[2].p0 )
 | |
|                             tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
 | |
|                         if( nodes[5]->feature.rect[2].p0 )
 | |
|                             tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
 | |
|                         if( nodes[6]->feature.rect[2].p0 )
 | |
|                             tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
 | |
|                         if( nodes[7]->feature.rect[2].p0 )
 | |
|                             tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
 | |
| 
 | |
|                         sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
 | |
| 
 | |
|                         __m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],
 | |
|                                                       classifiers[6]->alpha[0],
 | |
|                                                       classifiers[5]->alpha[0],
 | |
|                                                       classifiers[4]->alpha[0],
 | |
|                                                       classifiers[3]->alpha[0],
 | |
|                                                       classifiers[2]->alpha[0],
 | |
|                                                       classifiers[1]->alpha[0],
 | |
|                                                       classifiers[0]->alpha[0]);
 | |
|                         __m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],
 | |
|                                                       classifiers[6]->alpha[1],
 | |
|                                                       classifiers[5]->alpha[1],
 | |
|                                                       classifiers[4]->alpha[1],
 | |
|                                                       classifiers[3]->alpha[1],
 | |
|                                                       classifiers[2]->alpha[1],
 | |
|                                                       classifiers[1]->alpha[1],
 | |
|                                                       classifiers[0]->alpha[1]);
 | |
| 
 | |
|                         __m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ ));
 | |
|                         outBuf = _mm256_hadd_ps(outBuf, outBuf);
 | |
|                         outBuf = _mm256_hadd_ps(outBuf, outBuf);
 | |
|                         _mm256_store_ps(buf, outBuf);
 | |
|                         stage_sum += (buf[0] + buf[4]);
 | |
|                     }
 | |
| 
 | |
|                     for( ; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
| 
 | |
|                         double t = node->threshold*variance_norm_factor;
 | |
|                         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                         if( node->feature.rect[2].p0 )
 | |
|                             sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
 | |
|                         stage_sum += classifier->alpha[sum >= t];
 | |
|                     }
 | |
|                 }
 | |
|                 if( stage_sum < cascade->stage_classifier[i].threshold )
 | |
|                     return -i;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
| #elif defined CV_HAAR_USE_SSE //old SSE optimization
 | |
|         if(haveSSE2)
 | |
|         {
 | |
|             for( i = start_stage; i < cascade->count; i++ )
 | |
|             {
 | |
|                 __m128d vstage_sum = _mm_setzero_pd();
 | |
|                 if( cascade->stage_classifier[i].two_rects )
 | |
|                 {
 | |
|                     for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
| 
 | |
|                         // ayasin - NHM perf optim. Avoid use of costly flaky jcc
 | |
|                         __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
 | |
|                         __m128d a = _mm_set_sd(classifier->alpha[0]);
 | |
|                         __m128d b = _mm_set_sd(classifier->alpha[1]);
 | |
|                         __m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
 | |
|                                                  calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
 | |
|                         t = _mm_cmpgt_sd(t, sum);
 | |
|                         vstage_sum = _mm_add_sd(vstage_sum, _mm_blendv_pd(b, a, t));
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
|                         // ayasin - NHM perf optim. Avoid use of costly flaky jcc
 | |
|                         __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
 | |
|                         __m128d a = _mm_set_sd(classifier->alpha[0]);
 | |
|                         __m128d b = _mm_set_sd(classifier->alpha[1]);
 | |
|                         double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                         _sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                         if( node->feature.rect[2].p0 )
 | |
|                             _sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
 | |
|                         __m128d sum = _mm_set_sd(_sum);
 | |
| 
 | |
|                         t = _mm_cmpgt_sd(t, sum);
 | |
|                         vstage_sum = _mm_add_sd(vstage_sum, _mm_blendv_pd(b, a, t));
 | |
|                     }
 | |
|                 }
 | |
|                 __m128d i_threshold = _mm_set1_pd(cascade->stage_classifier[i].threshold);
 | |
|                 if( _mm_comilt_sd(vstage_sum, i_threshold) )
 | |
|                     return -i;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
| #endif // AVX or SSE
 | |
|         {
 | |
|             for( i = start_stage; i < cascade->count; i++ )
 | |
|             {
 | |
|                 stage_sum = 0.0;
 | |
|                 if( cascade->stage_classifier[i].two_rects )
 | |
|                 {
 | |
|                     for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
|                         double t = node->threshold*variance_norm_factor;
 | |
|                         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                         stage_sum += classifier->alpha[sum >= t];
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|                     {
 | |
|                         CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|                         CvHidHaarTreeNode* node = classifier->node;
 | |
|                         double t = node->threshold*variance_norm_factor;
 | |
|                         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
 | |
|                         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
 | |
|                         if( node->feature.rect[2].p0 )
 | |
|                             sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
 | |
|                         stage_sum += classifier->alpha[sum >= t];
 | |
|                     }
 | |
|                 }
 | |
|                 if( stage_sum < cascade->stage_classifier[i].threshold )
 | |
|                     return -i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for( i = start_stage; i < cascade->count; i++ )
 | |
|         {
 | |
|             stage_sum = 0.0;
 | |
|             int k = 0;
 | |
| 
 | |
| #ifdef CV_HAAR_USE_AVX
 | |
|             if(haveAVX)
 | |
|             {
 | |
|                 for( ; k < cascade->stage_classifier[i].count - 8; k += 8 )
 | |
|                 {
 | |
|                     stage_sum += icvEvalHidHaarClassifierAVX(
 | |
|                         cascade->stage_classifier[i].classifier + k,
 | |
|                         variance_norm_factor, p_offset );
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|             for(; k < cascade->stage_classifier[i].count; k++ )
 | |
|             {
 | |
| 
 | |
|                 stage_sum += icvEvalHidHaarClassifier(
 | |
|                     cascade->stage_classifier[i].classifier + k,
 | |
|                     variance_norm_factor, p_offset );
 | |
|             }
 | |
| 
 | |
|             if( stage_sum < cascade->stage_classifier[i].threshold )
 | |
|                 return -i;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| CV_IMPL int
 | |
| cvRunHaarClassifierCascade( const CvHaarClassifierCascade* _cascade,
 | |
|                             CvPoint pt, int start_stage )
 | |
| {
 | |
|     double stage_sum;
 | |
|     return cvRunHaarClassifierCascadeSum(_cascade, pt, stage_sum, start_stage);
 | |
| }
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| struct HaarDetectObjects_ScaleImage_Invoker
 | |
| {
 | |
|     HaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade* _cascade,
 | |
|                                           int _stripSize, double _factor,
 | |
|                                           const Mat& _sum1, const Mat& _sqsum1, Mat* _norm1,
 | |
|                                           Mat* _mask1, Rect _equRect, ConcurrentRectVector& _vec,
 | |
|                                           std::vector<int>& _levels, std::vector<double>& _weights,
 | |
|                                           bool _outputLevels  )
 | |
|     {
 | |
|         cascade = _cascade;
 | |
|         stripSize = _stripSize;
 | |
|         factor = _factor;
 | |
|         sum1 = _sum1;
 | |
|         sqsum1 = _sqsum1;
 | |
|         norm1 = _norm1;
 | |
|         mask1 = _mask1;
 | |
|         equRect = _equRect;
 | |
|         vec = &_vec;
 | |
|         rejectLevels = _outputLevels ? &_levels : 0;
 | |
|         levelWeights = _outputLevels ? &_weights : 0;
 | |
|     }
 | |
| 
 | |
|     void operator()( const BlockedRange& range ) const
 | |
|     {
 | |
|         Size winSize0 = cascade->orig_window_size;
 | |
|         Size winSize(cvRound(winSize0.width*factor), cvRound(winSize0.height*factor));
 | |
|         int y1 = range.begin()*stripSize, y2 = min(range.end()*stripSize, sum1.rows - 1 - winSize0.height);
 | |
| 
 | |
|         if (y2 <= y1 || sum1.cols <= 1 + winSize0.width)
 | |
|             return;
 | |
| 
 | |
|         Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1);
 | |
|         int x, y, ystep = factor > 2 ? 1 : 2;
 | |
| 
 | |
| #ifdef HAVE_IPP
 | |
|         if( cascade->hid_cascade->ipp_stages )
 | |
|         {
 | |
|             IppiRect iequRect = {equRect.x, equRect.y, equRect.width, equRect.height};
 | |
|             ippiRectStdDev_32f_C1R(sum1.ptr<float>(y1), sum1.step,
 | |
|                                    sqsum1.ptr<double>(y1), sqsum1.step,
 | |
|                                    norm1->ptr<float>(y1), norm1->step,
 | |
|                                    ippiSize(ssz.width, ssz.height), iequRect );
 | |
| 
 | |
|             int positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);
 | |
| 
 | |
|             if( ystep == 1 )
 | |
|                 (*mask1) = Scalar::all(1);
 | |
|             else
 | |
|                 for( y = y1; y < y2; y++ )
 | |
|                 {
 | |
|                     uchar* mask1row = mask1->ptr(y);
 | |
|                     memset( mask1row, 0, ssz.width );
 | |
| 
 | |
|                     if( y % ystep == 0 )
 | |
|                         for( x = 0; x < ssz.width; x += ystep )
 | |
|                             mask1row[x] = (uchar)1;
 | |
|                 }
 | |
| 
 | |
|             for( int j = 0; j < cascade->count; j++ )
 | |
|             {
 | |
|                 if( ippiApplyHaarClassifier_32f_C1R(
 | |
|                             sum1.ptr<float>(y1), sum1.step,
 | |
|                             norm1->ptr<float>(y1), norm1->step,
 | |
|                             mask1->ptr<uchar>(y1), mask1->step,
 | |
|                             ippiSize(ssz.width, ssz.height), &positive,
 | |
|                             cascade->hid_cascade->stage_classifier[j].threshold,
 | |
|                             (IppiHaarClassifier_32f*)cascade->hid_cascade->ipp_stages[j]) < 0 )
 | |
|                     positive = 0;
 | |
|                 if( positive <= 0 )
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             if( positive > 0 )
 | |
|                 for( y = y1; y < y2; y += ystep )
 | |
|                 {
 | |
|                     uchar* mask1row = mask1->ptr(y);
 | |
|                     for( x = 0; x < ssz.width; x += ystep )
 | |
|                         if( mask1row[x] != 0 )
 | |
|                         {
 | |
|                             vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),
 | |
|                                                 winSize.width, winSize.height));
 | |
|                             if( --positive == 0 )
 | |
|                                 break;
 | |
|                         }
 | |
|                     if( positive == 0 )
 | |
|                         break;
 | |
|                 }
 | |
|         }
 | |
|         else
 | |
| #endif // IPP
 | |
|             for( y = y1; y < y2; y += ystep )
 | |
|                 for( x = 0; x < ssz.width; x += ystep )
 | |
|                 {
 | |
|                     double gypWeight;
 | |
|                     int result = cvRunHaarClassifierCascadeSum( cascade, cvPoint(x,y), gypWeight, 0 );
 | |
|                     if( rejectLevels )
 | |
|                     {
 | |
|                         if( result == 1 )
 | |
|                             result = -1*cascade->count;
 | |
|                         if( cascade->count + result < 4 )
 | |
|                         {
 | |
|                             vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),
 | |
|                                            winSize.width, winSize.height));
 | |
|                             rejectLevels->push_back(-result);
 | |
|                             levelWeights->push_back(gypWeight);
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if( result > 0 )
 | |
|                             vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),
 | |
|                                            winSize.width, winSize.height));
 | |
|                     }
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     const CvHaarClassifierCascade* cascade;
 | |
|     int stripSize;
 | |
|     double factor;
 | |
|     Mat sum1, sqsum1, *norm1, *mask1;
 | |
|     Rect equRect;
 | |
|     ConcurrentRectVector* vec;
 | |
|     std::vector<int>* rejectLevels;
 | |
|     std::vector<double>* levelWeights;
 | |
| };
 | |
| 
 | |
| 
 | |
| struct HaarDetectObjects_ScaleCascade_Invoker
 | |
| {
 | |
|     HaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade* _cascade,
 | |
|                                             Size _winsize, const Range& _xrange, double _ystep,
 | |
|                                             size_t _sumstep, const int** _p, const int** _pq,
 | |
|                                             ConcurrentRectVector& _vec )
 | |
|     {
 | |
|         cascade = _cascade;
 | |
|         winsize = _winsize;
 | |
|         xrange = _xrange;
 | |
|         ystep = _ystep;
 | |
|         sumstep = _sumstep;
 | |
|         p = _p; pq = _pq;
 | |
|         vec = &_vec;
 | |
|     }
 | |
| 
 | |
|     void operator()( const BlockedRange& range ) const
 | |
|     {
 | |
|         int iy, startY = range.begin(), endY = range.end();
 | |
|         const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3];
 | |
|         const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3];
 | |
|         bool doCannyPruning = p0 != 0;
 | |
|         int sstep = (int)(sumstep/sizeof(p0[0]));
 | |
| 
 | |
|         for( iy = startY; iy < endY; iy++ )
 | |
|         {
 | |
|             int ix, y = cvRound(iy*ystep), ixstep = 1;
 | |
|             for( ix = xrange.start; ix < xrange.end; ix += ixstep )
 | |
|             {
 | |
|                 int x = cvRound(ix*ystep); // it should really be ystep, not ixstep
 | |
| 
 | |
|                 if( doCannyPruning )
 | |
|                 {
 | |
|                     int offset = y*sstep + x;
 | |
|                     int s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
 | |
|                     int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
 | |
|                     if( s < 100 || sq < 20 )
 | |
|                     {
 | |
|                         ixstep = 2;
 | |
|                         continue;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 int result = cvRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 );
 | |
|                 if( result > 0 )
 | |
|                     vec->push_back(Rect(x, y, winsize.width, winsize.height));
 | |
|                 ixstep = result != 0 ? 1 : 2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const CvHaarClassifierCascade* cascade;
 | |
|     double ystep;
 | |
|     size_t sumstep;
 | |
|     Size winsize;
 | |
|     Range xrange;
 | |
|     const int** p;
 | |
|     const int** pq;
 | |
|     ConcurrentRectVector* vec;
 | |
| };
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| CvSeq*
 | |
| cvHaarDetectObjectsForROC( const CvArr* _img,
 | |
|                      CvHaarClassifierCascade* cascade, CvMemStorage* storage,
 | |
|                      std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
 | |
|                      double scaleFactor, int minNeighbors, int flags,
 | |
|                      CvSize minSize, CvSize maxSize, bool outputRejectLevels )
 | |
| {
 | |
|     const double GROUP_EPS = 0.2;
 | |
|     CvMat stub, *img = (CvMat*)_img;
 | |
|     cv::Ptr<CvMat> temp, sum, tilted, sqsum, normImg, sumcanny, imgSmall;
 | |
|     CvSeq* result_seq = 0;
 | |
|     cv::Ptr<CvMemStorage> temp_storage;
 | |
| 
 | |
|     cv::ConcurrentRectVector allCandidates;
 | |
|     std::vector<cv::Rect> rectList;
 | |
|     std::vector<int> rweights;
 | |
|     double factor;
 | |
|     int coi;
 | |
|     bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
 | |
|     bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
 | |
|     bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
 | |
| 
 | |
|     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
 | |
|         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
 | |
| 
 | |
|     if( !storage )
 | |
|         CV_Error( CV_StsNullPtr, "Null storage pointer" );
 | |
| 
 | |
|     img = cvGetMat( img, &stub, &coi );
 | |
|     if( coi )
 | |
|         CV_Error( CV_BadCOI, "COI is not supported" );
 | |
| 
 | |
|     if( CV_MAT_DEPTH(img->type) != CV_8U )
 | |
|         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
 | |
| 
 | |
|     if( scaleFactor <= 1 )
 | |
|         CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
 | |
| 
 | |
|     if( findBiggestObject )
 | |
|         flags &= ~CV_HAAR_SCALE_IMAGE;
 | |
| 
 | |
|     if( maxSize.height == 0 || maxSize.width == 0 )
 | |
|     {
 | |
|         maxSize.height = img->rows;
 | |
|         maxSize.width = img->cols;
 | |
|     }
 | |
| 
 | |
|     temp = cvCreateMat( img->rows, img->cols, CV_8UC1 );
 | |
|     sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
 | |
|     sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 );
 | |
| 
 | |
|     if( !cascade->hid_cascade )
 | |
|         icvCreateHidHaarClassifierCascade(cascade);
 | |
| 
 | |
|     if( cascade->hid_cascade->has_tilted_features )
 | |
|         tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
 | |
| 
 | |
|     result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
 | |
| 
 | |
|     if( CV_MAT_CN(img->type) > 1 )
 | |
|     {
 | |
|         cvCvtColor( img, temp, CV_BGR2GRAY );
 | |
|         img = temp;
 | |
|     }
 | |
| 
 | |
|     if( findBiggestObject )
 | |
|         flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);
 | |
| 
 | |
|     if( flags & CV_HAAR_SCALE_IMAGE )
 | |
|     {
 | |
|         CvSize winSize0 = cascade->orig_window_size;
 | |
| #ifdef HAVE_IPP
 | |
|         int use_ipp = cascade->hid_cascade->ipp_stages != 0;
 | |
| 
 | |
|         if( use_ipp )
 | |
|             normImg = cvCreateMat( img->rows, img->cols, CV_32FC1 );
 | |
| #endif
 | |
|         imgSmall = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 );
 | |
| 
 | |
|         for( factor = 1; ; factor *= scaleFactor )
 | |
|         {
 | |
|             CvSize winSize = { cvRound(winSize0.width*factor),
 | |
|                                 cvRound(winSize0.height*factor) };
 | |
|             CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };
 | |
|             CvSize sz1 = { sz.width - winSize0.width + 1, sz.height - winSize0.height + 1 };
 | |
| 
 | |
|             CvRect equRect = { icv_object_win_border, icv_object_win_border,
 | |
|                 winSize0.width - icv_object_win_border*2,
 | |
|                 winSize0.height - icv_object_win_border*2 };
 | |
| 
 | |
|             CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;
 | |
|             CvMat* _tilted = 0;
 | |
| 
 | |
|             if( sz1.width <= 0 || sz1.height <= 0 )
 | |
|                 break;
 | |
|             if( winSize.width > maxSize.width || winSize.height > maxSize.height )
 | |
|                 break;
 | |
|             if( winSize.width < minSize.width || winSize.height < minSize.height )
 | |
|                 continue;
 | |
| 
 | |
|             img1 = cvMat( sz.height, sz.width, CV_8UC1, imgSmall->data.ptr );
 | |
|             sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );
 | |
|             sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );
 | |
|             if( tilted )
 | |
|             {
 | |
|                 tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );
 | |
|                 _tilted = &tilted1;
 | |
|             }
 | |
|             norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, normImg ? normImg->data.ptr : 0 );
 | |
|             mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );
 | |
| 
 | |
|             cvResize( img, &img1, CV_INTER_LINEAR );
 | |
|             cvIntegral( &img1, &sum1, &sqsum1, _tilted );
 | |
| 
 | |
|             int ystep = factor > 2 ? 1 : 2;
 | |
|             const int LOCS_PER_THREAD = 1000;
 | |
|             int stripCount = ((sz1.width/ystep)*(sz1.height + ystep-1)/ystep + LOCS_PER_THREAD/2)/LOCS_PER_THREAD;
 | |
|             stripCount = std::min(std::max(stripCount, 1), 100);
 | |
| 
 | |
| #ifdef HAVE_IPP
 | |
|             if( use_ipp )
 | |
|             {
 | |
|                 cv::Mat fsum(sum1.rows, sum1.cols, CV_32F, sum1.data.ptr, sum1.step);
 | |
|                 cv::Mat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24));
 | |
|             }
 | |
|             else
 | |
| #endif
 | |
|                 cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. );
 | |
| 
 | |
|             cv::Mat _norm1(&norm1), _mask1(&mask1);
 | |
|             cv::parallel_for(cv::BlockedRange(0, stripCount),
 | |
|                          cv::HaarDetectObjects_ScaleImage_Invoker(cascade,
 | |
|                                 (((sz1.height + stripCount - 1)/stripCount + ystep-1)/ystep)*ystep,
 | |
|                                 factor, cv::Mat(&sum1), cv::Mat(&sqsum1), &_norm1, &_mask1,
 | |
|                                 cv::Rect(equRect), allCandidates, rejectLevels, levelWeights, outputRejectLevels));
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         int n_factors = 0;
 | |
|         cv::Rect scanROI;
 | |
| 
 | |
|         cvIntegral( img, sum, sqsum, tilted );
 | |
| 
 | |
|         if( doCannyPruning )
 | |
|         {
 | |
|             sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
 | |
|             cvCanny( img, temp, 0, 50, 3 );
 | |
|             cvIntegral( temp, sumcanny );
 | |
|         }
 | |
| 
 | |
|         for( n_factors = 0, factor = 1;
 | |
|              factor*cascade->orig_window_size.width < img->cols - 10 &&
 | |
|              factor*cascade->orig_window_size.height < img->rows - 10;
 | |
|              n_factors++, factor *= scaleFactor )
 | |
|             ;
 | |
| 
 | |
|         if( findBiggestObject )
 | |
|         {
 | |
|             scaleFactor = 1./scaleFactor;
 | |
|             factor *= scaleFactor;
 | |
|         }
 | |
|         else
 | |
|             factor = 1;
 | |
| 
 | |
|         for( ; n_factors-- > 0; factor *= scaleFactor )
 | |
|         {
 | |
|             const double ystep = std::max( 2., factor );
 | |
|             CvSize winSize = { cvRound( cascade->orig_window_size.width * factor ),
 | |
|                                 cvRound( cascade->orig_window_size.height * factor )};
 | |
|             CvRect equRect = { 0, 0, 0, 0 };
 | |
|             int *p[4] = {0,0,0,0};
 | |
|             int *pq[4] = {0,0,0,0};
 | |
|             int startX = 0, startY = 0;
 | |
|             int endX = cvRound((img->cols - winSize.width) / ystep);
 | |
|             int endY = cvRound((img->rows - winSize.height) / ystep);
 | |
| 
 | |
|             if( winSize.width < minSize.width || winSize.height < minSize.height )
 | |
|             {
 | |
|                 if( findBiggestObject )
 | |
|                     break;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if ( winSize.width > maxSize.width || winSize.height > maxSize.height )
 | |
|             {
 | |
|                 if( !findBiggestObject )
 | |
|                     break;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );
 | |
|             cvZero( temp );
 | |
| 
 | |
|             if( doCannyPruning )
 | |
|             {
 | |
|                 equRect.x = cvRound(winSize.width*0.15);
 | |
|                 equRect.y = cvRound(winSize.height*0.15);
 | |
|                 equRect.width = cvRound(winSize.width*0.7);
 | |
|                 equRect.height = cvRound(winSize.height*0.7);
 | |
| 
 | |
|                 p[0] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step) + equRect.x;
 | |
|                 p[1] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step)
 | |
|                             + equRect.x + equRect.width;
 | |
|                 p[2] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step) + equRect.x;
 | |
|                 p[3] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step)
 | |
|                             + equRect.x + equRect.width;
 | |
| 
 | |
|                 pq[0] = (int*)(sum->data.ptr + equRect.y*sum->step) + equRect.x;
 | |
|                 pq[1] = (int*)(sum->data.ptr + equRect.y*sum->step)
 | |
|                             + equRect.x + equRect.width;
 | |
|                 pq[2] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step) + equRect.x;
 | |
|                 pq[3] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step)
 | |
|                             + equRect.x + equRect.width;
 | |
|             }
 | |
| 
 | |
|             if( scanROI.area() > 0 )
 | |
|             {
 | |
|                 //adjust start_height and stop_height
 | |
|                 startY = cvRound(scanROI.y / ystep);
 | |
|                 endY = cvRound((scanROI.y + scanROI.height - winSize.height) / ystep);
 | |
| 
 | |
|                 startX = cvRound(scanROI.x / ystep);
 | |
|                 endX = cvRound((scanROI.x + scanROI.width - winSize.width) / ystep);
 | |
|             }
 | |
| 
 | |
|             cv::parallel_for(cv::BlockedRange(startY, endY),
 | |
|                 cv::HaarDetectObjects_ScaleCascade_Invoker(cascade, winSize, cv::Range(startX, endX),
 | |
|                                                            ystep, sum->step, (const int**)p,
 | |
|                                                            (const int**)pq, allCandidates ));
 | |
| 
 | |
|             if( findBiggestObject && !allCandidates.empty() && scanROI.area() == 0 )
 | |
|             {
 | |
|                 rectList.resize(allCandidates.size());
 | |
|                 std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
 | |
| 
 | |
|                 groupRectangles(rectList, std::max(minNeighbors, 1), GROUP_EPS);
 | |
| 
 | |
|                 if( !rectList.empty() )
 | |
|                 {
 | |
|                     size_t i, sz = rectList.size();
 | |
|                     cv::Rect maxRect;
 | |
| 
 | |
|                     for( i = 0; i < sz; i++ )
 | |
|                     {
 | |
|                         if( rectList[i].area() > maxRect.area() )
 | |
|                             maxRect = rectList[i];
 | |
|                     }
 | |
| 
 | |
|                     allCandidates.push_back(maxRect);
 | |
| 
 | |
|                     scanROI = maxRect;
 | |
|                     int dx = cvRound(maxRect.width*GROUP_EPS);
 | |
|                     int dy = cvRound(maxRect.height*GROUP_EPS);
 | |
|                     scanROI.x = std::max(scanROI.x - dx, 0);
 | |
|                     scanROI.y = std::max(scanROI.y - dy, 0);
 | |
|                     scanROI.width = std::min(scanROI.width + dx*2, img->cols-1-scanROI.x);
 | |
|                     scanROI.height = std::min(scanROI.height + dy*2, img->rows-1-scanROI.y);
 | |
| 
 | |
|                     double minScale = roughSearch ? 0.6 : 0.4;
 | |
|                     minSize.width = cvRound(maxRect.width*minScale);
 | |
|                     minSize.height = cvRound(maxRect.height*minScale);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rectList.resize(allCandidates.size());
 | |
|     if(!allCandidates.empty())
 | |
|         std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
 | |
| 
 | |
|     if( minNeighbors != 0 || findBiggestObject )
 | |
|     {
 | |
|         if( outputRejectLevels )
 | |
|         {
 | |
|             groupRectangles(rectList, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|         rweights.resize(rectList.size(),0);
 | |
| 
 | |
|     if( findBiggestObject && rectList.size() )
 | |
|     {
 | |
|         CvAvgComp result_comp = {{0,0,0,0},0};
 | |
| 
 | |
|         for( size_t i = 0; i < rectList.size(); i++ )
 | |
|         {
 | |
|             cv::Rect r = rectList[i];
 | |
|             if( r.area() > cv::Rect(result_comp.rect).area() )
 | |
|             {
 | |
|                 result_comp.rect = r;
 | |
|                 result_comp.neighbors = rweights[i];
 | |
|             }
 | |
|         }
 | |
|         cvSeqPush( result_seq, &result_comp );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for( size_t i = 0; i < rectList.size(); i++ )
 | |
|         {
 | |
|             CvAvgComp c;
 | |
|             c.rect = rectList[i];
 | |
|             c.neighbors = !rweights.empty() ? rweights[i] : 0;
 | |
|             cvSeqPush( result_seq, &c );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result_seq;
 | |
| }
 | |
| 
 | |
| CV_IMPL CvSeq*
 | |
| cvHaarDetectObjects( const CvArr* _img,
 | |
|                      CvHaarClassifierCascade* cascade, CvMemStorage* storage,
 | |
|                      double scaleFactor,
 | |
|                      int minNeighbors, int flags, CvSize minSize, CvSize maxSize )
 | |
| {
 | |
|     std::vector<int> fakeLevels;
 | |
|     std::vector<double> fakeWeights;
 | |
|     return cvHaarDetectObjectsForROC( _img, cascade, storage, fakeLevels, fakeWeights,
 | |
|                                 scaleFactor, minNeighbors, flags, minSize, maxSize, false );
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static CvHaarClassifierCascade*
 | |
| icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
 | |
| {
 | |
|     int i;
 | |
|     CvHaarClassifierCascade* cascade = icvCreateHaarClassifierCascade(n);
 | |
|     cascade->orig_window_size = orig_window_size;
 | |
| 
 | |
|     for( i = 0; i < n; i++ )
 | |
|     {
 | |
|         int j, count, l;
 | |
|         float threshold = 0;
 | |
|         const char* stage = input_cascade[i];
 | |
|         int dl = 0;
 | |
| 
 | |
|         /* tree links */
 | |
|         int parent = -1;
 | |
|         int next = -1;
 | |
| 
 | |
|         sscanf( stage, "%d%n", &count, &dl );
 | |
|         stage += dl;
 | |
| 
 | |
|         assert( count > 0 );
 | |
|         cascade->stage_classifier[i].count = count;
 | |
|         cascade->stage_classifier[i].classifier =
 | |
|             (CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0]));
 | |
| 
 | |
|         for( j = 0; j < count; j++ )
 | |
|         {
 | |
|             CvHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
 | |
|             int k, rects = 0;
 | |
|             char str[100];
 | |
| 
 | |
|             sscanf( stage, "%d%n", &classifier->count, &dl );
 | |
|             stage += dl;
 | |
| 
 | |
|             classifier->haar_feature = (CvHaarFeature*) cvAlloc(
 | |
|                 classifier->count * ( sizeof( *classifier->haar_feature ) +
 | |
|                                       sizeof( *classifier->threshold ) +
 | |
|                                       sizeof( *classifier->left ) +
 | |
|                                       sizeof( *classifier->right ) ) +
 | |
|                 (classifier->count + 1) * sizeof( *classifier->alpha ) );
 | |
|             classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
 | |
|             classifier->left = (int*) (classifier->threshold + classifier->count);
 | |
|             classifier->right = (int*) (classifier->left + classifier->count);
 | |
|             classifier->alpha = (float*) (classifier->right + classifier->count);
 | |
| 
 | |
|             for( l = 0; l < classifier->count; l++ )
 | |
|             {
 | |
|                 sscanf( stage, "%d%n", &rects, &dl );
 | |
|                 stage += dl;
 | |
| 
 | |
|                 assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
 | |
| 
 | |
|                 for( k = 0; k < rects; k++ )
 | |
|                 {
 | |
|                     CvRect r;
 | |
|                     int band = 0;
 | |
|                     sscanf( stage, "%d%d%d%d%d%f%n",
 | |
|                             &r.x, &r.y, &r.width, &r.height, &band,
 | |
|                             &(classifier->haar_feature[l].rect[k].weight), &dl );
 | |
|                     stage += dl;
 | |
|                     classifier->haar_feature[l].rect[k].r = r;
 | |
|                 }
 | |
|                 sscanf( stage, "%s%n", str, &dl );
 | |
|                 stage += dl;
 | |
| 
 | |
|                 classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;
 | |
| 
 | |
|                 for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ )
 | |
|                 {
 | |
|                     memset( classifier->haar_feature[l].rect + k, 0,
 | |
|                             sizeof(classifier->haar_feature[l].rect[k]) );
 | |
|                 }
 | |
| 
 | |
|                 sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]),
 | |
|                                        &(classifier->left[l]),
 | |
|                                        &(classifier->right[l]), &dl );
 | |
|                 stage += dl;
 | |
|             }
 | |
|             for( l = 0; l <= classifier->count; l++ )
 | |
|             {
 | |
|                 sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl );
 | |
|                 stage += dl;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sscanf( stage, "%f%n", &threshold, &dl );
 | |
|         stage += dl;
 | |
| 
 | |
|         cascade->stage_classifier[i].threshold = threshold;
 | |
| 
 | |
|         /* load tree links */
 | |
|         if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 )
 | |
|         {
 | |
|             parent = i - 1;
 | |
|             next = -1;
 | |
|         }
 | |
|         stage += dl;
 | |
| 
 | |
|         cascade->stage_classifier[i].parent = parent;
 | |
|         cascade->stage_classifier[i].next = next;
 | |
|         cascade->stage_classifier[i].child = -1;
 | |
| 
 | |
|         if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
 | |
|         {
 | |
|             cascade->stage_classifier[parent].child = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return cascade;
 | |
| }
 | |
| 
 | |
| #ifndef _MAX_PATH
 | |
| #define _MAX_PATH 1024
 | |
| #endif
 | |
| 
 | |
| CV_IMPL CvHaarClassifierCascade*
 | |
| cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size )
 | |
| {
 | |
|     const char** input_cascade = 0;
 | |
|     CvHaarClassifierCascade *cascade = 0;
 | |
| 
 | |
|     int i, n;
 | |
|     const char* slash;
 | |
|     char name[_MAX_PATH];
 | |
|     int size = 0;
 | |
|     char* ptr = 0;
 | |
| 
 | |
|     if( !directory )
 | |
|         CV_Error( CV_StsNullPtr, "Null path is passed" );
 | |
| 
 | |
|     n = (int)strlen(directory)-1;
 | |
|     slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/";
 | |
| 
 | |
|     /* try to read the classifier from directory */
 | |
|     for( n = 0; ; n++ )
 | |
|     {
 | |
|         sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n );
 | |
|         FILE* f = fopen( name, "rb" );
 | |
|         if( !f )
 | |
|             break;
 | |
|         fseek( f, 0, SEEK_END );
 | |
|         size += ftell( f ) + 1;
 | |
|         fclose(f);
 | |
|     }
 | |
| 
 | |
|     if( n == 0 && slash[0] )
 | |
|         return (CvHaarClassifierCascade*)cvLoad( directory );
 | |
| 
 | |
|     if( n == 0 )
 | |
|         CV_Error( CV_StsBadArg, "Invalid path" );
 | |
| 
 | |
|     size += (n+1)*sizeof(char*);
 | |
|     input_cascade = (const char**)cvAlloc( size );
 | |
|     ptr = (char*)(input_cascade + n + 1);
 | |
| 
 | |
|     for( i = 0; i < n; i++ )
 | |
|     {
 | |
|         sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i );
 | |
|         FILE* f = fopen( name, "rb" );
 | |
|         if( !f )
 | |
|             CV_Error( CV_StsError, "" );
 | |
|         fseek( f, 0, SEEK_END );
 | |
|         size = ftell( f );
 | |
|         fseek( f, 0, SEEK_SET );
 | |
|         size_t elements_read = fread( ptr, 1, size, f );
 | |
|         CV_Assert(elements_read == (size_t)(size));
 | |
|         fclose(f);
 | |
|         input_cascade[i] = ptr;
 | |
|         ptr += size;
 | |
|         *ptr++ = '\0';
 | |
|     }
 | |
| 
 | |
|     input_cascade[n] = 0;
 | |
|     cascade = icvLoadCascadeCART( input_cascade, n, orig_window_size );
 | |
| 
 | |
|     if( input_cascade )
 | |
|         cvFree( &input_cascade );
 | |
| 
 | |
|     return cascade;
 | |
| }
 | |
| 
 | |
| 
 | |
| CV_IMPL void
 | |
| cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade )
 | |
| {
 | |
|     if( _cascade && *_cascade )
 | |
|     {
 | |
|         int i, j;
 | |
|         CvHaarClassifierCascade* cascade = *_cascade;
 | |
| 
 | |
|         for( i = 0; i < cascade->count; i++ )
 | |
|         {
 | |
|             for( j = 0; j < cascade->stage_classifier[i].count; j++ )
 | |
|                 cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature );
 | |
|             cvFree( &cascade->stage_classifier[i].classifier );
 | |
|         }
 | |
|         icvReleaseHidHaarClassifierCascade( &cascade->hid_cascade );
 | |
|         cvFree( _cascade );
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                  Persistence functions                                 *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /* field names */
 | |
| 
 | |
| #define ICV_HAAR_SIZE_NAME            "size"
 | |
| #define ICV_HAAR_STAGES_NAME          "stages"
 | |
| #define ICV_HAAR_TREES_NAME           "trees"
 | |
| #define ICV_HAAR_FEATURE_NAME         "feature"
 | |
| #define ICV_HAAR_RECTS_NAME           "rects"
 | |
| #define ICV_HAAR_TILTED_NAME          "tilted"
 | |
| #define ICV_HAAR_THRESHOLD_NAME       "threshold"
 | |
| #define ICV_HAAR_LEFT_NODE_NAME       "left_node"
 | |
| #define ICV_HAAR_LEFT_VAL_NAME        "left_val"
 | |
| #define ICV_HAAR_RIGHT_NODE_NAME      "right_node"
 | |
| #define ICV_HAAR_RIGHT_VAL_NAME       "right_val"
 | |
| #define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
 | |
| #define ICV_HAAR_PARENT_NAME          "parent"
 | |
| #define ICV_HAAR_NEXT_NAME            "next"
 | |
| 
 | |
| static int
 | |
| icvIsHaarClassifier( const void* struct_ptr )
 | |
| {
 | |
|     return CV_IS_HAAR_CLASSIFIER( struct_ptr );
 | |
| }
 | |
| 
 | |
| static void*
 | |
| icvReadHaarClassifier( CvFileStorage* fs, CvFileNode* node )
 | |
| {
 | |
|     CvHaarClassifierCascade* cascade = NULL;
 | |
| 
 | |
|     char buf[256];
 | |
|     CvFileNode* seq_fn = NULL; /* sequence */
 | |
|     CvFileNode* fn = NULL;
 | |
|     CvFileNode* stages_fn = NULL;
 | |
|     CvSeqReader stages_reader;
 | |
|     int n;
 | |
|     int i, j, k, l;
 | |
|     int parent, next;
 | |
| 
 | |
|     stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME );
 | |
|     if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) )
 | |
|         CV_Error( CV_StsError, "Invalid stages node" );
 | |
| 
 | |
|     n = stages_fn->data.seq->total;
 | |
|     cascade = icvCreateHaarClassifierCascade(n);
 | |
| 
 | |
|     /* read size */
 | |
|     seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME );
 | |
|     if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 )
 | |
|         CV_Error( CV_StsError, "size node is not a valid sequence." );
 | |
|     fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 0 );
 | |
|     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
 | |
|         CV_Error( CV_StsError, "Invalid size node: width must be positive integer" );
 | |
|     cascade->orig_window_size.width = fn->data.i;
 | |
|     fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 1 );
 | |
|     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
 | |
|         CV_Error( CV_StsError, "Invalid size node: height must be positive integer" );
 | |
|     cascade->orig_window_size.height = fn->data.i;
 | |
| 
 | |
|     cvStartReadSeq( stages_fn->data.seq, &stages_reader );
 | |
|     for( i = 0; i < n; ++i )
 | |
|     {
 | |
|         CvFileNode* stage_fn;
 | |
|         CvFileNode* trees_fn;
 | |
|         CvSeqReader trees_reader;
 | |
| 
 | |
|         stage_fn = (CvFileNode*) stages_reader.ptr;
 | |
|         if( !CV_NODE_IS_MAP( stage_fn->tag ) )
 | |
|         {
 | |
|             sprintf( buf, "Invalid stage %d", i );
 | |
|             CV_Error( CV_StsError, buf );
 | |
|         }
 | |
| 
 | |
|         trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME );
 | |
|         if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag )
 | |
|             || trees_fn->data.seq->total <= 0 )
 | |
|         {
 | |
|             sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i );
 | |
|             CV_Error( CV_StsError, buf );
 | |
|         }
 | |
| 
 | |
|         cascade->stage_classifier[i].classifier =
 | |
|             (CvHaarClassifier*) cvAlloc( trees_fn->data.seq->total
 | |
|                 * sizeof( cascade->stage_classifier[i].classifier[0] ) );
 | |
|         for( j = 0; j < trees_fn->data.seq->total; ++j )
 | |
|         {
 | |
|             cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
 | |
|         }
 | |
|         cascade->stage_classifier[i].count = trees_fn->data.seq->total;
 | |
| 
 | |
|         cvStartReadSeq( trees_fn->data.seq, &trees_reader );
 | |
|         for( j = 0; j < trees_fn->data.seq->total; ++j )
 | |
|         {
 | |
|             CvFileNode* tree_fn;
 | |
|             CvSeqReader tree_reader;
 | |
|             CvHaarClassifier* classifier;
 | |
|             int last_idx;
 | |
| 
 | |
|             classifier = &cascade->stage_classifier[i].classifier[j];
 | |
|             tree_fn = (CvFileNode*) trees_reader.ptr;
 | |
|             if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 )
 | |
|             {
 | |
|                 sprintf( buf, "Tree node is not a valid sequence."
 | |
|                          " (stage %d, tree %d)", i, j );
 | |
|                 CV_Error( CV_StsError, buf );
 | |
|             }
 | |
| 
 | |
|             classifier->count = tree_fn->data.seq->total;
 | |
|             classifier->haar_feature = (CvHaarFeature*) cvAlloc(
 | |
|                 classifier->count * ( sizeof( *classifier->haar_feature ) +
 | |
|                                       sizeof( *classifier->threshold ) +
 | |
|                                       sizeof( *classifier->left ) +
 | |
|                                       sizeof( *classifier->right ) ) +
 | |
|                 (classifier->count + 1) * sizeof( *classifier->alpha ) );
 | |
|             classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
 | |
|             classifier->left = (int*) (classifier->threshold + classifier->count);
 | |
|             classifier->right = (int*) (classifier->left + classifier->count);
 | |
|             classifier->alpha = (float*) (classifier->right + classifier->count);
 | |
| 
 | |
|             cvStartReadSeq( tree_fn->data.seq, &tree_reader );
 | |
|             for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k )
 | |
|             {
 | |
|                 CvFileNode* node_fn;
 | |
|                 CvFileNode* feature_fn;
 | |
|                 CvFileNode* rects_fn;
 | |
|                 CvSeqReader rects_reader;
 | |
| 
 | |
|                 node_fn = (CvFileNode*) tree_reader.ptr;
 | |
|                 if( !CV_NODE_IS_MAP( node_fn->tag ) )
 | |
|                 {
 | |
|                     sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)",
 | |
|                              k, i, j );
 | |
|                     CV_Error( CV_StsError, buf );
 | |
|                 }
 | |
|                 feature_fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_FEATURE_NAME );
 | |
|                 if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) )
 | |
|                 {
 | |
|                     sprintf( buf, "Feature node is not a valid map. "
 | |
|                              "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                     CV_Error( CV_StsError, buf );
 | |
|                 }
 | |
|                 rects_fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_RECTS_NAME );
 | |
|                 if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag )
 | |
|                     || rects_fn->data.seq->total < 1
 | |
|                     || rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX )
 | |
|                 {
 | |
|                     sprintf( buf, "Rects node is not a valid sequence. "
 | |
|                              "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                     CV_Error( CV_StsError, buf );
 | |
|                 }
 | |
|                 cvStartReadSeq( rects_fn->data.seq, &rects_reader );
 | |
|                 for( l = 0; l < rects_fn->data.seq->total; ++l )
 | |
|                 {
 | |
|                     CvFileNode* rect_fn;
 | |
|                     CvRect r;
 | |
| 
 | |
|                     rect_fn = (CvFileNode*) rects_reader.ptr;
 | |
|                     if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 )
 | |
|                     {
 | |
|                         sprintf( buf, "Rect %d is not a valid sequence. "
 | |
|                                  "(stage %d, tree %d, node %d)", l, i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
| 
 | |
|                     fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 );
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
 | |
|                     {
 | |
|                         sprintf( buf, "x coordinate must be non-negative integer. "
 | |
|                                  "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     r.x = fn->data.i;
 | |
|                     fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 );
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
 | |
|                     {
 | |
|                         sprintf( buf, "y coordinate must be non-negative integer. "
 | |
|                                  "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     r.y = fn->data.i;
 | |
|                     fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 );
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
 | |
|                         || r.x + fn->data.i > cascade->orig_window_size.width )
 | |
|                     {
 | |
|                         sprintf( buf, "width must be positive integer and "
 | |
|                                  "(x + width) must not exceed window width. "
 | |
|                                  "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     r.width = fn->data.i;
 | |
|                     fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 );
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
 | |
|                         || r.y + fn->data.i > cascade->orig_window_size.height )
 | |
|                     {
 | |
|                         sprintf( buf, "height must be positive integer and "
 | |
|                                  "(y + height) must not exceed window height. "
 | |
|                                  "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     r.height = fn->data.i;
 | |
|                     fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 );
 | |
|                     if( !CV_NODE_IS_REAL( fn->tag ) )
 | |
|                     {
 | |
|                         sprintf( buf, "weight must be real number. "
 | |
|                                  "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
| 
 | |
|                     classifier->haar_feature[k].rect[l].weight = (float) fn->data.f;
 | |
|                     classifier->haar_feature[k].rect[l].r = r;
 | |
| 
 | |
|                     CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader );
 | |
|                 } /* for each rect */
 | |
|                 for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l )
 | |
|                 {
 | |
|                     classifier->haar_feature[k].rect[l].weight = 0;
 | |
|                     classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 );
 | |
|                 }
 | |
| 
 | |
|                 fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME);
 | |
|                 if( !fn || !CV_NODE_IS_INT( fn->tag ) )
 | |
|                 {
 | |
|                     sprintf( buf, "tilted must be 0 or 1. "
 | |
|                              "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                     CV_Error( CV_StsError, buf );
 | |
|                 }
 | |
|                 classifier->haar_feature[k].tilted = ( fn->data.i != 0 );
 | |
|                 fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME);
 | |
|                 if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
 | |
|                 {
 | |
|                     sprintf( buf, "threshold must be real number. "
 | |
|                              "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                     CV_Error( CV_StsError, buf );
 | |
|                 }
 | |
|                 classifier->threshold[k] = (float) fn->data.f;
 | |
|                 fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME);
 | |
|                 if( fn )
 | |
|                 {
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
 | |
|                         || fn->data.i >= tree_fn->data.seq->total )
 | |
|                     {
 | |
|                         sprintf( buf, "left node must be valid node number. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     /* left node */
 | |
|                     classifier->left[k] = fn->data.i;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_VAL_NAME );
 | |
|                     if( !fn )
 | |
|                     {
 | |
|                         sprintf( buf, "left node or left value must be specified. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     if( !CV_NODE_IS_REAL( fn->tag ) )
 | |
|                     {
 | |
|                         sprintf( buf, "left value must be real number. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     /* left value */
 | |
|                     if( last_idx >= classifier->count + 1 )
 | |
|                     {
 | |
|                         sprintf( buf, "Tree structure is broken: too many values. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     classifier->left[k] = -last_idx;
 | |
|                     classifier->alpha[last_idx++] = (float) fn->data.f;
 | |
|                 }
 | |
|                 fn = cvGetFileNodeByName( fs, node_fn,ICV_HAAR_RIGHT_NODE_NAME);
 | |
|                 if( fn )
 | |
|                 {
 | |
|                     if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
 | |
|                         || fn->data.i >= tree_fn->data.seq->total )
 | |
|                     {
 | |
|                         sprintf( buf, "right node must be valid node number. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     /* right node */
 | |
|                     classifier->right[k] = fn->data.i;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_VAL_NAME );
 | |
|                     if( !fn )
 | |
|                     {
 | |
|                         sprintf( buf, "right node or right value must be specified. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     if( !CV_NODE_IS_REAL( fn->tag ) )
 | |
|                     {
 | |
|                         sprintf( buf, "right value must be real number. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     /* right value */
 | |
|                     if( last_idx >= classifier->count + 1 )
 | |
|                     {
 | |
|                         sprintf( buf, "Tree structure is broken: too many values. "
 | |
|                                  "(stage %d, tree %d, node %d)", i, j, k );
 | |
|                         CV_Error( CV_StsError, buf );
 | |
|                     }
 | |
|                     classifier->right[k] = -last_idx;
 | |
|                     classifier->alpha[last_idx++] = (float) fn->data.f;
 | |
|                 }
 | |
| 
 | |
|                 CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader );
 | |
|             } /* for each node */
 | |
|             if( last_idx != classifier->count + 1 )
 | |
|             {
 | |
|                 sprintf( buf, "Tree structure is broken: too few values. "
 | |
|                          "(stage %d, tree %d)", i, j );
 | |
|                 CV_Error( CV_StsError, buf );
 | |
|             }
 | |
| 
 | |
|             CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader );
 | |
|         } /* for each tree */
 | |
| 
 | |
|         fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME);
 | |
|         if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
 | |
|         {
 | |
|             sprintf( buf, "stage threshold must be real number. (stage %d)", i );
 | |
|             CV_Error( CV_StsError, buf );
 | |
|         }
 | |
|         cascade->stage_classifier[i].threshold = (float) fn->data.f;
 | |
| 
 | |
|         parent = i - 1;
 | |
|         next = -1;
 | |
| 
 | |
|         fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME );
 | |
|         if( !fn || !CV_NODE_IS_INT( fn->tag )
 | |
|             || fn->data.i < -1 || fn->data.i >= cascade->count )
 | |
|         {
 | |
|             sprintf( buf, "parent must be integer number. (stage %d)", i );
 | |
|             CV_Error( CV_StsError, buf );
 | |
|         }
 | |
|         parent = fn->data.i;
 | |
|         fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME );
 | |
|         if( !fn || !CV_NODE_IS_INT( fn->tag )
 | |
|             || fn->data.i < -1 || fn->data.i >= cascade->count )
 | |
|         {
 | |
|             sprintf( buf, "next must be integer number. (stage %d)", i );
 | |
|             CV_Error( CV_StsError, buf );
 | |
|         }
 | |
|         next = fn->data.i;
 | |
| 
 | |
|         cascade->stage_classifier[i].parent = parent;
 | |
|         cascade->stage_classifier[i].next = next;
 | |
|         cascade->stage_classifier[i].child = -1;
 | |
| 
 | |
|         if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
 | |
|         {
 | |
|             cascade->stage_classifier[parent].child = i;
 | |
|         }
 | |
| 
 | |
|         CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader );
 | |
|     } /* for each stage */
 | |
| 
 | |
|     return cascade;
 | |
| }
 | |
| 
 | |
| static void
 | |
| icvWriteHaarClassifier( CvFileStorage* fs, const char* name, const void* struct_ptr,
 | |
|                         CvAttrList attributes )
 | |
| {
 | |
|     int i, j, k, l;
 | |
|     char buf[256];
 | |
|     const CvHaarClassifierCascade* cascade = (const CvHaarClassifierCascade*) struct_ptr;
 | |
| 
 | |
|     /* TODO: parameters check */
 | |
| 
 | |
|     cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes );
 | |
| 
 | |
|     cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW );
 | |
|     cvWriteInt( fs, NULL, cascade->orig_window_size.width );
 | |
|     cvWriteInt( fs, NULL, cascade->orig_window_size.height );
 | |
|     cvEndWriteStruct( fs ); /* size */
 | |
| 
 | |
|     cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ );
 | |
|     for( i = 0; i < cascade->count; ++i )
 | |
|     {
 | |
|         cvStartWriteStruct( fs, NULL, CV_NODE_MAP );
 | |
|         sprintf( buf, "stage %d", i );
 | |
|         cvWriteComment( fs, buf, 1 );
 | |
| 
 | |
|         cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ );
 | |
| 
 | |
|         for( j = 0; j < cascade->stage_classifier[i].count; ++j )
 | |
|         {
 | |
|             CvHaarClassifier* tree = &cascade->stage_classifier[i].classifier[j];
 | |
| 
 | |
|             cvStartWriteStruct( fs, NULL, CV_NODE_SEQ );
 | |
|             sprintf( buf, "tree %d", j );
 | |
|             cvWriteComment( fs, buf, 1 );
 | |
| 
 | |
|             for( k = 0; k < tree->count; ++k )
 | |
|             {
 | |
|                 CvHaarFeature* feature = &tree->haar_feature[k];
 | |
| 
 | |
|                 cvStartWriteStruct( fs, NULL, CV_NODE_MAP );
 | |
|                 if( k )
 | |
|                 {
 | |
|                     sprintf( buf, "node %d", k );
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     sprintf( buf, "root node" );
 | |
|                 }
 | |
|                 cvWriteComment( fs, buf, 1 );
 | |
| 
 | |
|                 cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP );
 | |
| 
 | |
|                 cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ );
 | |
|                 for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l )
 | |
|                 {
 | |
|                     cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW );
 | |
|                     cvWriteInt(  fs, NULL, feature->rect[l].r.x );
 | |
|                     cvWriteInt(  fs, NULL, feature->rect[l].r.y );
 | |
|                     cvWriteInt(  fs, NULL, feature->rect[l].r.width );
 | |
|                     cvWriteInt(  fs, NULL, feature->rect[l].r.height );
 | |
|                     cvWriteReal( fs, NULL, feature->rect[l].weight );
 | |
|                     cvEndWriteStruct( fs ); /* rect */
 | |
|                 }
 | |
|                 cvEndWriteStruct( fs ); /* rects */
 | |
|                 cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted );
 | |
|                 cvEndWriteStruct( fs ); /* feature */
 | |
| 
 | |
|                 cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]);
 | |
| 
 | |
|                 if( tree->left[k] > 0 )
 | |
|                 {
 | |
|                     cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] );
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME,
 | |
|                         tree->alpha[-tree->left[k]] );
 | |
|                 }
 | |
| 
 | |
|                 if( tree->right[k] > 0 )
 | |
|                 {
 | |
|                     cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] );
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME,
 | |
|                         tree->alpha[-tree->right[k]] );
 | |
|                 }
 | |
| 
 | |
|                 cvEndWriteStruct( fs ); /* split */
 | |
|             }
 | |
| 
 | |
|             cvEndWriteStruct( fs ); /* tree */
 | |
|         }
 | |
| 
 | |
|         cvEndWriteStruct( fs ); /* trees */
 | |
| 
 | |
|         cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME, cascade->stage_classifier[i].threshold);
 | |
|         cvWriteInt( fs, ICV_HAAR_PARENT_NAME, cascade->stage_classifier[i].parent );
 | |
|         cvWriteInt( fs, ICV_HAAR_NEXT_NAME, cascade->stage_classifier[i].next );
 | |
| 
 | |
|         cvEndWriteStruct( fs ); /* stage */
 | |
|     } /* for each stage */
 | |
| 
 | |
|     cvEndWriteStruct( fs ); /* stages */
 | |
|     cvEndWriteStruct( fs ); /* root */
 | |
| }
 | |
| 
 | |
| static void*
 | |
| icvCloneHaarClassifier( const void* struct_ptr )
 | |
| {
 | |
|     CvHaarClassifierCascade* cascade = NULL;
 | |
| 
 | |
|     int i, j, k, n;
 | |
|     const CvHaarClassifierCascade* cascade_src =
 | |
|         (const CvHaarClassifierCascade*) struct_ptr;
 | |
| 
 | |
|     n = cascade_src->count;
 | |
|     cascade = icvCreateHaarClassifierCascade(n);
 | |
|     cascade->orig_window_size = cascade_src->orig_window_size;
 | |
| 
 | |
|     for( i = 0; i < n; ++i )
 | |
|     {
 | |
|         cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent;
 | |
|         cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next;
 | |
|         cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child;
 | |
|         cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold;
 | |
| 
 | |
|         cascade->stage_classifier[i].count = 0;
 | |
|         cascade->stage_classifier[i].classifier =
 | |
|             (CvHaarClassifier*) cvAlloc( cascade_src->stage_classifier[i].count
 | |
|                 * sizeof( cascade->stage_classifier[i].classifier[0] ) );
 | |
| 
 | |
|         cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count;
 | |
| 
 | |
|         for( j = 0; j < cascade->stage_classifier[i].count; ++j )
 | |
|             cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
 | |
| 
 | |
|         for( j = 0; j < cascade->stage_classifier[i].count; ++j )
 | |
|         {
 | |
|             const CvHaarClassifier* classifier_src =
 | |
|                 &cascade_src->stage_classifier[i].classifier[j];
 | |
|             CvHaarClassifier* classifier =
 | |
|                 &cascade->stage_classifier[i].classifier[j];
 | |
| 
 | |
|             classifier->count = classifier_src->count;
 | |
|             classifier->haar_feature = (CvHaarFeature*) cvAlloc(
 | |
|                 classifier->count * ( sizeof( *classifier->haar_feature ) +
 | |
|                                       sizeof( *classifier->threshold ) +
 | |
|                                       sizeof( *classifier->left ) +
 | |
|                                       sizeof( *classifier->right ) ) +
 | |
|                 (classifier->count + 1) * sizeof( *classifier->alpha ) );
 | |
|             classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
 | |
|             classifier->left = (int*) (classifier->threshold + classifier->count);
 | |
|             classifier->right = (int*) (classifier->left + classifier->count);
 | |
|             classifier->alpha = (float*) (classifier->right + classifier->count);
 | |
|             for( k = 0; k < classifier->count; ++k )
 | |
|             {
 | |
|                 classifier->haar_feature[k] = classifier_src->haar_feature[k];
 | |
|                 classifier->threshold[k] = classifier_src->threshold[k];
 | |
|                 classifier->left[k] = classifier_src->left[k];
 | |
|                 classifier->right[k] = classifier_src->right[k];
 | |
|                 classifier->alpha[k] = classifier_src->alpha[k];
 | |
|             }
 | |
|             classifier->alpha[classifier->count] =
 | |
|                 classifier_src->alpha[classifier->count];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return cascade;
 | |
| }
 | |
| 
 | |
| 
 | |
| CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier,
 | |
|                   (CvReleaseFunc)cvReleaseHaarClassifierCascade,
 | |
|                   icvReadHaarClassifier, icvWriteHaarClassifier,
 | |
|                   icvCloneHaarClassifier );
 | |
| 
 | |
| /* End of file. */
 | 
