opencv/modules/core/src/array.cpp
Roman Donchenko 8200a95ced Boring changes - core.
This and several following commits contain the "boring" changes required
to support the new Ptr. These are changes like:

* new T -> makePtr<T> or .reset(new T) or Ptr<T>(new T)
  (depending on the situation)
* p.empty() -> !p
* delete_obj -> DefaultDeleter::operator()

and similar changes that are numerous, but primitive.
2013-09-05 18:26:43 +04:00

3214 lines
84 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// CvMat, CvMatND, CvSparceMat and IplImage support functions
// (creation, deletion, copying, retrieving and setting elements etc.)
//
// */
#include "precomp.hpp"
#define CV_ORIGIN_TL 0
#define CV_ORIGIN_BL 1
/* default image row align (in bytes) */
#define CV_DEFAULT_IMAGE_ROW_ALIGN 4
static struct
{
Cv_iplCreateImageHeader createHeader;
Cv_iplAllocateImageData allocateData;
Cv_iplDeallocate deallocate;
Cv_iplCreateROI createROI;
Cv_iplCloneImage cloneImage;
}
CvIPL;
// Makes the library use native IPL image allocators
CV_IMPL void
cvSetIPLAllocators( Cv_iplCreateImageHeader createHeader,
Cv_iplAllocateImageData allocateData,
Cv_iplDeallocate deallocate,
Cv_iplCreateROI createROI,
Cv_iplCloneImage cloneImage )
{
int count = (createHeader != 0) + (allocateData != 0) + (deallocate != 0) +
(createROI != 0) + (cloneImage != 0);
if( count != 0 && count != 5 )
CV_Error( CV_StsBadArg, "Either all the pointers should be null or "
"they all should be non-null" );
CvIPL.createHeader = createHeader;
CvIPL.allocateData = allocateData;
CvIPL.deallocate = deallocate;
CvIPL.createROI = createROI;
CvIPL.cloneImage = cloneImage;
}
/****************************************************************************************\
* CvMat creation and basic operations *
\****************************************************************************************/
// Creates CvMat and underlying data
CV_IMPL CvMat*
cvCreateMat( int height, int width, int type )
{
CvMat* arr = cvCreateMatHeader( height, width, type );
cvCreateData( arr );
return arr;
}
static void icvCheckHuge( CvMat* arr )
{
if( (int64)arr->step*arr->rows > INT_MAX )
arr->type &= ~CV_MAT_CONT_FLAG;
}
// Creates CvMat header only
CV_IMPL CvMat*
cvCreateMatHeader( int rows, int cols, int type )
{
type = CV_MAT_TYPE(type);
if( rows < 0 || cols <= 0 )
CV_Error( CV_StsBadSize, "Non-positive width or height" );
int min_step = CV_ELEM_SIZE(type)*cols;
if( min_step <= 0 )
CV_Error( CV_StsUnsupportedFormat, "Invalid matrix type" );
CvMat* arr = (CvMat*)cvAlloc( sizeof(*arr));
arr->step = min_step;
arr->type = CV_MAT_MAGIC_VAL | type | CV_MAT_CONT_FLAG;
arr->rows = rows;
arr->cols = cols;
arr->data.ptr = 0;
arr->refcount = 0;
arr->hdr_refcount = 1;
icvCheckHuge( arr );
return arr;
}
// Initializes CvMat header, allocated by the user
CV_IMPL CvMat*
cvInitMatHeader( CvMat* arr, int rows, int cols,
int type, void* data, int step )
{
if( !arr )
CV_Error( CV_StsNullPtr, "" );
if( (unsigned)CV_MAT_DEPTH(type) > CV_DEPTH_MAX )
CV_Error( CV_BadNumChannels, "" );
if( rows < 0 || cols <= 0 )
CV_Error( CV_StsBadSize, "Non-positive cols or rows" );
type = CV_MAT_TYPE( type );
arr->type = type | CV_MAT_MAGIC_VAL;
arr->rows = rows;
arr->cols = cols;
arr->data.ptr = (uchar*)data;
arr->refcount = 0;
arr->hdr_refcount = 0;
int pix_size = CV_ELEM_SIZE(type);
int min_step = arr->cols*pix_size;
if( step != CV_AUTOSTEP && step != 0 )
{
if( step < min_step )
CV_Error( CV_BadStep, "" );
arr->step = step;
}
else
{
arr->step = min_step;
}
arr->type = CV_MAT_MAGIC_VAL | type |
(arr->rows == 1 || arr->step == min_step ? CV_MAT_CONT_FLAG : 0);
icvCheckHuge( arr );
return arr;
}
// Deallocates the CvMat structure and underlying data
CV_IMPL void
cvReleaseMat( CvMat** array )
{
if( !array )
CV_Error( CV_HeaderIsNull, "" );
if( *array )
{
CvMat* arr = *array;
if( !CV_IS_MAT_HDR_Z(arr) && !CV_IS_MATND_HDR(arr) )
CV_Error( CV_StsBadFlag, "" );
*array = 0;
cvDecRefData( arr );
cvFree( &arr );
}
}
// Creates a copy of matrix
CV_IMPL CvMat*
cvCloneMat( const CvMat* src )
{
if( !CV_IS_MAT_HDR( src ))
CV_Error( CV_StsBadArg, "Bad CvMat header" );
CvMat* dst = cvCreateMatHeader( src->rows, src->cols, src->type );
if( src->data.ptr )
{
cvCreateData( dst );
cvCopy( src, dst );
}
return dst;
}
/****************************************************************************************\
* CvMatND creation and basic operations *
\****************************************************************************************/
CV_IMPL CvMatND*
cvInitMatNDHeader( CvMatND* mat, int dims, const int* sizes,
int type, void* data )
{
type = CV_MAT_TYPE(type);
int64 step = CV_ELEM_SIZE(type);
if( !mat )
CV_Error( CV_StsNullPtr, "NULL matrix header pointer" );
if( step == 0 )
CV_Error( CV_StsUnsupportedFormat, "invalid array data type" );
if( !sizes )
CV_Error( CV_StsNullPtr, "NULL <sizes> pointer" );
if( dims <= 0 || dims > CV_MAX_DIM )
CV_Error( CV_StsOutOfRange,
"non-positive or too large number of dimensions" );
for( int i = dims - 1; i >= 0; i-- )
{
if( sizes[i] < 0 )
CV_Error( CV_StsBadSize, "one of dimesion sizes is non-positive" );
mat->dim[i].size = sizes[i];
if( step > INT_MAX )
CV_Error( CV_StsOutOfRange, "The array is too big" );
mat->dim[i].step = (int)step;
step *= sizes[i];
}
mat->type = CV_MATND_MAGIC_VAL | (step <= INT_MAX ? CV_MAT_CONT_FLAG : 0) | type;
mat->dims = dims;
mat->data.ptr = (uchar*)data;
mat->refcount = 0;
mat->hdr_refcount = 0;
return mat;
}
// Creates CvMatND and underlying data
CV_IMPL CvMatND*
cvCreateMatND( int dims, const int* sizes, int type )
{
CvMatND* arr = cvCreateMatNDHeader( dims, sizes, type );
cvCreateData( arr );
return arr;
}
// Creates CvMatND header only
CV_IMPL CvMatND*
cvCreateMatNDHeader( int dims, const int* sizes, int type )
{
if( dims <= 0 || dims > CV_MAX_DIM )
CV_Error( CV_StsOutOfRange,
"non-positive or too large number of dimensions" );
CvMatND* arr = (CvMatND*)cvAlloc( sizeof(*arr) );
cvInitMatNDHeader( arr, dims, sizes, type, 0 );
arr->hdr_refcount = 1;
return arr;
}
// Creates a copy of nD array
CV_IMPL CvMatND*
cvCloneMatND( const CvMatND* src )
{
if( !CV_IS_MATND_HDR( src ))
CV_Error( CV_StsBadArg, "Bad CvMatND header" );
CV_Assert( src->dims <= CV_MAX_DIM );
int sizes[CV_MAX_DIM];
for( int i = 0; i < src->dims; i++ )
sizes[i] = src->dim[i].size;
CvMatND* dst = cvCreateMatNDHeader( src->dims, sizes, src->type );
if( src->data.ptr )
{
cvCreateData( dst );
cv::Mat _src = cv::cvarrToMat(src);
cv::Mat _dst = cv::cvarrToMat(dst);
uchar* data0 = dst->data.ptr;
_src.copyTo(_dst);
CV_Assert(_dst.data == data0);
//cvCopy( src, dst );
}
return dst;
}
static CvMatND*
cvGetMatND( const CvArr* arr, CvMatND* matnd, int* coi )
{
CvMatND* result = 0;
if( coi )
*coi = 0;
if( !matnd || !arr )
CV_Error( CV_StsNullPtr, "NULL array pointer is passed" );
if( CV_IS_MATND_HDR(arr))
{
if( !((CvMatND*)arr)->data.ptr )
CV_Error( CV_StsNullPtr, "The matrix has NULL data pointer" );
result = (CvMatND*)arr;
}
else
{
CvMat stub, *mat = (CvMat*)arr;
if( CV_IS_IMAGE_HDR( mat ))
mat = cvGetMat( mat, &stub, coi );
if( !CV_IS_MAT_HDR( mat ))
CV_Error( CV_StsBadArg, "Unrecognized or unsupported array type" );
if( !mat->data.ptr )
CV_Error( CV_StsNullPtr, "Input array has NULL data pointer" );
matnd->data.ptr = mat->data.ptr;
matnd->refcount = 0;
matnd->hdr_refcount = 0;
matnd->type = mat->type;
matnd->dims = 2;
matnd->dim[0].size = mat->rows;
matnd->dim[0].step = mat->step;
matnd->dim[1].size = mat->cols;
matnd->dim[1].step = CV_ELEM_SIZE(mat->type);
result = matnd;
}
return result;
}
// returns number of dimensions to iterate.
/*
Checks whether <count> arrays have equal type, sizes (mask is optional array
that needs to have the same size, but 8uC1 or 8sC1 type).
Returns number of dimensions to iterate through:
0 means that all arrays are continuous,
1 means that all arrays are vectors of continuous arrays etc.
and the size of largest common continuous part of the arrays
*/
CV_IMPL int
cvInitNArrayIterator( int count, CvArr** arrs,
const CvArr* mask, CvMatND* stubs,
CvNArrayIterator* iterator, int flags )
{
int dims = -1;
int i, j, size, dim0 = -1;
int64 step;
CvMatND* hdr0 = 0;
if( count < 1 || count > CV_MAX_ARR )
CV_Error( CV_StsOutOfRange, "Incorrect number of arrays" );
if( !arrs || !stubs )
CV_Error( CV_StsNullPtr, "Some of required array pointers is NULL" );
if( !iterator )
CV_Error( CV_StsNullPtr, "Iterator pointer is NULL" );
for( i = 0; i <= count; i++ )
{
const CvArr* arr = i < count ? arrs[i] : mask;
CvMatND* hdr;
if( !arr )
{
if( i < count )
CV_Error( CV_StsNullPtr, "Some of required array pointers is NULL" );
break;
}
if( CV_IS_MATND( arr ))
hdr = (CvMatND*)arr;
else
{
int coi = 0;
hdr = cvGetMatND( arr, stubs + i, &coi );
if( coi != 0 )
CV_Error( CV_BadCOI, "COI set is not allowed here" );
}
iterator->hdr[i] = hdr;
if( i > 0 )
{
if( hdr->dims != hdr0->dims )
CV_Error( CV_StsUnmatchedSizes,
"Number of dimensions is the same for all arrays" );
if( i < count )
{
switch( flags & (CV_NO_DEPTH_CHECK|CV_NO_CN_CHECK))
{
case 0:
if( !CV_ARE_TYPES_EQ( hdr, hdr0 ))
CV_Error( CV_StsUnmatchedFormats,
"Data type is not the same for all arrays" );
break;
case CV_NO_DEPTH_CHECK:
if( !CV_ARE_CNS_EQ( hdr, hdr0 ))
CV_Error( CV_StsUnmatchedFormats,
"Number of channels is not the same for all arrays" );
break;
case CV_NO_CN_CHECK:
if( !CV_ARE_CNS_EQ( hdr, hdr0 ))
CV_Error( CV_StsUnmatchedFormats,
"Depth is not the same for all arrays" );
break;
}
}
else
{
if( !CV_IS_MASK_ARR( hdr ))
CV_Error( CV_StsBadMask, "Mask should have 8uC1 or 8sC1 data type" );
}
if( !(flags & CV_NO_SIZE_CHECK) )
{
for( j = 0; j < hdr->dims; j++ )
if( hdr->dim[j].size != hdr0->dim[j].size )
CV_Error( CV_StsUnmatchedSizes,
"Dimension sizes are the same for all arrays" );
}
}
else
hdr0 = hdr;
step = CV_ELEM_SIZE(hdr->type);
for( j = hdr->dims - 1; j > dim0; j-- )
{
if( step != hdr->dim[j].step )
break;
step *= hdr->dim[j].size;
}
if( j == dim0 && step > INT_MAX )
j++;
if( j > dim0 )
dim0 = j;
iterator->hdr[i] = (CvMatND*)hdr;
iterator->ptr[i] = (uchar*)hdr->data.ptr;
}
size = 1;
for( j = hdr0->dims - 1; j > dim0; j-- )
size *= hdr0->dim[j].size;
dims = dim0 + 1;
iterator->dims = dims;
iterator->count = count;
iterator->size = cvSize(size,1);
for( i = 0; i < dims; i++ )
iterator->stack[i] = hdr0->dim[i].size;
return dims;
}
// returns zero value if iteration is finished, non-zero otherwise
CV_IMPL int cvNextNArraySlice( CvNArrayIterator* iterator )
{
assert( iterator != 0 );
int i, dims, size = 0;
for( dims = iterator->dims; dims > 0; dims-- )
{
for( i = 0; i < iterator->count; i++ )
iterator->ptr[i] += iterator->hdr[i]->dim[dims-1].step;
if( --iterator->stack[dims-1] > 0 )
break;
size = iterator->hdr[0]->dim[dims-1].size;
for( i = 0; i < iterator->count; i++ )
iterator->ptr[i] -= (size_t)size*iterator->hdr[i]->dim[dims-1].step;
iterator->stack[dims-1] = size;
}
return dims > 0;
}
/****************************************************************************************\
* CvSparseMat creation and basic operations *
\****************************************************************************************/
// Creates CvMatND and underlying data
CV_IMPL CvSparseMat*
cvCreateSparseMat( int dims, const int* sizes, int type )
{
type = CV_MAT_TYPE( type );
int pix_size1 = CV_ELEM_SIZE1(type);
int pix_size = pix_size1*CV_MAT_CN(type);
int i, size;
CvMemStorage* storage;
if( pix_size == 0 )
CV_Error( CV_StsUnsupportedFormat, "invalid array data type" );
if( dims <= 0 || dims > CV_MAX_DIM_HEAP )
CV_Error( CV_StsOutOfRange, "bad number of dimensions" );
if( !sizes )
CV_Error( CV_StsNullPtr, "NULL <sizes> pointer" );
for( i = 0; i < dims; i++ )
{
if( sizes[i] <= 0 )
CV_Error( CV_StsBadSize, "one of dimesion sizes is non-positive" );
}
CvSparseMat* arr = (CvSparseMat*)cvAlloc(sizeof(*arr)+MAX(0,dims-CV_MAX_DIM)*sizeof(arr->size[0]));
arr->type = CV_SPARSE_MAT_MAGIC_VAL | type;
arr->dims = dims;
arr->refcount = 0;
arr->hdr_refcount = 1;
memcpy( arr->size, sizes, dims*sizeof(sizes[0]));
arr->valoffset = (int)cvAlign(sizeof(CvSparseNode), pix_size1);
arr->idxoffset = (int)cvAlign(arr->valoffset + pix_size, sizeof(int));
size = (int)cvAlign(arr->idxoffset + dims*sizeof(int), sizeof(CvSetElem));
storage = cvCreateMemStorage( CV_SPARSE_MAT_BLOCK );
arr->heap = cvCreateSet( 0, sizeof(CvSet), size, storage );
arr->hashsize = CV_SPARSE_HASH_SIZE0;
size = arr->hashsize*sizeof(arr->hashtable[0]);
arr->hashtable = (void**)cvAlloc( size );
memset( arr->hashtable, 0, size );
return arr;
}
// Creates CvMatND and underlying data
CV_IMPL void
cvReleaseSparseMat( CvSparseMat** array )
{
if( !array )
CV_Error( CV_HeaderIsNull, "" );
if( *array )
{
CvSparseMat* arr = *array;
if( !CV_IS_SPARSE_MAT_HDR(arr) )
CV_Error( CV_StsBadFlag, "" );
*array = 0;
CvMemStorage* storage = arr->heap->storage;
cvReleaseMemStorage( &storage );
cvFree( &arr->hashtable );
cvFree( &arr );
}
}
// Creates CvMatND and underlying data
CV_IMPL CvSparseMat*
cvCloneSparseMat( const CvSparseMat* src )
{
if( !CV_IS_SPARSE_MAT_HDR(src) )
CV_Error( CV_StsBadArg, "Invalid sparse array header" );
CvSparseMat* dst = cvCreateSparseMat( src->dims, src->size, src->type );
cvCopy( src, dst );
return dst;
}
CvSparseNode*
cvInitSparseMatIterator( const CvSparseMat* mat, CvSparseMatIterator* iterator )
{
CvSparseNode* node = 0;
int idx;
if( !CV_IS_SPARSE_MAT( mat ))
CV_Error( CV_StsBadArg, "Invalid sparse matrix header" );
if( !iterator )
CV_Error( CV_StsNullPtr, "NULL iterator pointer" );
iterator->mat = (CvSparseMat*)mat;
iterator->node = 0;
for( idx = 0; idx < mat->hashsize; idx++ )
if( mat->hashtable[idx] )
{
node = iterator->node = (CvSparseNode*)mat->hashtable[idx];
break;
}
iterator->curidx = idx;
return node;
}
#define ICV_SPARSE_MAT_HASH_MULTIPLIER cv::SparseMat::HASH_SCALE
static uchar*
icvGetNodePtr( CvSparseMat* mat, const int* idx, int* _type,
int create_node, unsigned* precalc_hashval )
{
uchar* ptr = 0;
int i, tabidx;
unsigned hashval = 0;
CvSparseNode *node;
assert( CV_IS_SPARSE_MAT( mat ));
if( !precalc_hashval )
{
for( i = 0; i < mat->dims; i++ )
{
int t = idx[i];
if( (unsigned)t >= (unsigned)mat->size[i] )
CV_Error( CV_StsOutOfRange, "One of indices is out of range" );
hashval = hashval*ICV_SPARSE_MAT_HASH_MULTIPLIER + t;
}
}
else
{
hashval = *precalc_hashval;
}
tabidx = hashval & (mat->hashsize - 1);
hashval &= INT_MAX;
if( create_node >= -1 )
{
for( node = (CvSparseNode*)mat->hashtable[tabidx];
node != 0; node = node->next )
{
if( node->hashval == hashval )
{
int* nodeidx = CV_NODE_IDX(mat,node);
for( i = 0; i < mat->dims; i++ )
if( idx[i] != nodeidx[i] )
break;
if( i == mat->dims )
{
ptr = (uchar*)CV_NODE_VAL(mat,node);
break;
}
}
}
}
if( !ptr && create_node )
{
if( mat->heap->active_count >= mat->hashsize*CV_SPARSE_HASH_RATIO )
{
void** newtable;
int newsize = MAX( mat->hashsize*2, CV_SPARSE_HASH_SIZE0);
int newrawsize = newsize*sizeof(newtable[0]);
CvSparseMatIterator iterator;
assert( (newsize & (newsize - 1)) == 0 );
// resize hash table
newtable = (void**)cvAlloc( newrawsize );
memset( newtable, 0, newrawsize );
node = cvInitSparseMatIterator( mat, &iterator );
while( node )
{
CvSparseNode* next = cvGetNextSparseNode( &iterator );
int newidx = node->hashval & (newsize - 1);
node->next = (CvSparseNode*)newtable[newidx];
newtable[newidx] = node;
node = next;
}
cvFree( &mat->hashtable );
mat->hashtable = newtable;
mat->hashsize = newsize;
tabidx = hashval & (newsize - 1);
}
node = (CvSparseNode*)cvSetNew( mat->heap );
node->hashval = hashval;
node->next = (CvSparseNode*)mat->hashtable[tabidx];
mat->hashtable[tabidx] = node;
memcpy(CV_NODE_IDX(mat,node), idx, mat->dims*sizeof(idx[0]));
ptr = (uchar*)CV_NODE_VAL(mat,node);
if( create_node > 0 )
memset( ptr, 0, CV_ELEM_SIZE(mat->type));
}
if( _type )
*_type = CV_MAT_TYPE(mat->type);
return ptr;
}
static void
icvDeleteNode( CvSparseMat* mat, const int* idx, unsigned* precalc_hashval )
{
int i, tabidx;
unsigned hashval = 0;
CvSparseNode *node, *prev = 0;
assert( CV_IS_SPARSE_MAT( mat ));
if( !precalc_hashval )
{
for( i = 0; i < mat->dims; i++ )
{
int t = idx[i];
if( (unsigned)t >= (unsigned)mat->size[i] )
CV_Error( CV_StsOutOfRange, "One of indices is out of range" );
hashval = hashval*ICV_SPARSE_MAT_HASH_MULTIPLIER + t;
}
}
else
{
hashval = *precalc_hashval;
}
tabidx = hashval & (mat->hashsize - 1);
hashval &= INT_MAX;
for( node = (CvSparseNode*)mat->hashtable[tabidx];
node != 0; prev = node, node = node->next )
{
if( node->hashval == hashval )
{
int* nodeidx = CV_NODE_IDX(mat,node);
for( i = 0; i < mat->dims; i++ )
if( idx[i] != nodeidx[i] )
break;
if( i == mat->dims )
break;
}
}
if( node )
{
if( prev )
prev->next = node->next;
else
mat->hashtable[tabidx] = node->next;
cvSetRemoveByPtr( mat->heap, node );
}
}
/****************************************************************************************\
* Common for multiple array types operations *
\****************************************************************************************/
// Allocates underlying array data
CV_IMPL void
cvCreateData( CvArr* arr )
{
if( CV_IS_MAT_HDR_Z( arr ))
{
size_t step, total_size;
CvMat* mat = (CvMat*)arr;
step = mat->step;
if( mat->rows == 0 || mat->cols == 0 )
return;
if( mat->data.ptr != 0 )
CV_Error( CV_StsError, "Data is already allocated" );
if( step == 0 )
step = CV_ELEM_SIZE(mat->type)*mat->cols;
int64 _total_size = (int64)step*mat->rows + sizeof(int) + CV_MALLOC_ALIGN;
total_size = (size_t)_total_size;
if(_total_size != (int64)total_size)
CV_Error(CV_StsNoMem, "Too big buffer is allocated" );
mat->refcount = (int*)cvAlloc( (size_t)total_size );
mat->data.ptr = (uchar*)cvAlignPtr( mat->refcount + 1, CV_MALLOC_ALIGN );
*mat->refcount = 1;
}
else if( CV_IS_IMAGE_HDR(arr))
{
IplImage* img = (IplImage*)arr;
if( img->imageData != 0 )
CV_Error( CV_StsError, "Data is already allocated" );
if( !CvIPL.allocateData )
{
img->imageData = img->imageDataOrigin =
(char*)cvAlloc( (size_t)img->imageSize );
}
else
{
int depth = img->depth;
int width = img->width;
if( img->depth == IPL_DEPTH_32F || img->depth == IPL_DEPTH_64F )
{
img->width *= img->depth == IPL_DEPTH_32F ? sizeof(float) : sizeof(double);
img->depth = IPL_DEPTH_8U;
}
CvIPL.allocateData( img, 0, 0 );
img->width = width;
img->depth = depth;
}
}
else if( CV_IS_MATND_HDR( arr ))
{
CvMatND* mat = (CvMatND*)arr;
int i;
size_t total_size = CV_ELEM_SIZE(mat->type);
if( mat->dim[0].size == 0 )
return;
if( mat->data.ptr != 0 )
CV_Error( CV_StsError, "Data is already allocated" );
if( CV_IS_MAT_CONT( mat->type ))
{
total_size = (size_t)mat->dim[0].size*(mat->dim[0].step != 0 ?
(size_t)mat->dim[0].step : total_size);
}
else
{
for( i = mat->dims - 1; i >= 0; i-- )
{
size_t size = (size_t)mat->dim[i].step*mat->dim[i].size;
if( total_size < size )
total_size = size;
}
}
mat->refcount = (int*)cvAlloc( total_size +
sizeof(int) + CV_MALLOC_ALIGN );
mat->data.ptr = (uchar*)cvAlignPtr( mat->refcount + 1, CV_MALLOC_ALIGN );
*mat->refcount = 1;
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
// Assigns external data to array
CV_IMPL void
cvSetData( CvArr* arr, void* data, int step )
{
int pix_size, min_step;
if( CV_IS_MAT_HDR(arr) || CV_IS_MATND_HDR(arr) )
cvReleaseData( arr );
if( CV_IS_MAT_HDR( arr ))
{
CvMat* mat = (CvMat*)arr;
int type = CV_MAT_TYPE(mat->type);
pix_size = CV_ELEM_SIZE(type);
min_step = mat->cols*pix_size;
if( step != CV_AUTOSTEP && step != 0 )
{
if( step < min_step && data != 0 )
CV_Error( CV_BadStep, "" );
mat->step = step;
}
else
mat->step = min_step;
mat->data.ptr = (uchar*)data;
mat->type = CV_MAT_MAGIC_VAL | type |
(mat->rows == 1 || mat->step == min_step ? CV_MAT_CONT_FLAG : 0);
icvCheckHuge( mat );
}
else if( CV_IS_IMAGE_HDR( arr ))
{
IplImage* img = (IplImage*)arr;
pix_size = ((img->depth & 255) >> 3)*img->nChannels;
min_step = img->width*pix_size;
if( step != CV_AUTOSTEP && img->height > 1 )
{
if( step < min_step && data != 0 )
CV_Error( CV_BadStep, "" );
img->widthStep = step;
}
else
{
img->widthStep = min_step;
}
img->imageSize = img->widthStep * img->height;
img->imageData = img->imageDataOrigin = (char*)data;
if( (((int)(size_t)data | step) & 7) == 0 &&
cvAlign(img->width * pix_size, 8) == step )
img->align = 8;
else
img->align = 4;
}
else if( CV_IS_MATND_HDR( arr ))
{
CvMatND* mat = (CvMatND*)arr;
int i;
int64 cur_step;
if( step != CV_AUTOSTEP )
CV_Error( CV_BadStep,
"For multidimensional array only CV_AUTOSTEP is allowed here" );
mat->data.ptr = (uchar*)data;
cur_step = CV_ELEM_SIZE(mat->type);
for( i = mat->dims - 1; i >= 0; i-- )
{
if( cur_step > INT_MAX )
CV_Error( CV_StsOutOfRange, "The array is too big" );
mat->dim[i].step = (int)cur_step;
cur_step *= mat->dim[i].size;
}
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
// Deallocates array's data
CV_IMPL void
cvReleaseData( CvArr* arr )
{
if( CV_IS_MAT_HDR( arr ) || CV_IS_MATND_HDR( arr ))
{
CvMat* mat = (CvMat*)arr;
cvDecRefData( mat );
}
else if( CV_IS_IMAGE_HDR( arr ))
{
IplImage* img = (IplImage*)arr;
if( !CvIPL.deallocate )
{
char* ptr = img->imageDataOrigin;
img->imageData = img->imageDataOrigin = 0;
cvFree( &ptr );
}
else
{
CvIPL.deallocate( img, IPL_IMAGE_DATA );
}
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
// Retrieves essential information about image ROI or CvMat data
CV_IMPL void
cvGetRawData( const CvArr* arr, uchar** data, int* step, CvSize* roi_size )
{
if( CV_IS_MAT( arr ))
{
CvMat *mat = (CvMat*)arr;
if( step )
*step = mat->step;
if( data )
*data = mat->data.ptr;
if( roi_size )
*roi_size = cvGetMatSize( mat );
}
else if( CV_IS_IMAGE( arr ))
{
IplImage* img = (IplImage*)arr;
if( step )
*step = img->widthStep;
if( data )
*data = cvPtr2D( img, 0, 0 );
if( roi_size )
{
if( img->roi )
{
*roi_size = cvSize( img->roi->width, img->roi->height );
}
else
{
*roi_size = cvSize( img->width, img->height );
}
}
}
else if( CV_IS_MATND( arr ))
{
CvMatND* mat = (CvMatND*)arr;
if( !CV_IS_MAT_CONT( mat->type ))
CV_Error( CV_StsBadArg, "Only continuous nD arrays are supported here" );
if( data )
*data = mat->data.ptr;
if( roi_size || step )
{
int i, size1 = mat->dim[0].size, size2 = 1;
if( mat->dims > 2 )
for( i = 1; i < mat->dims; i++ )
size1 *= mat->dim[i].size;
else
size2 = mat->dim[1].size;
if( roi_size )
{
roi_size->width = size2;
roi_size->height = size1;
}
if( step )
*step = mat->dim[0].step;
}
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
CV_IMPL int
cvGetElemType( const CvArr* arr )
{
int type = -1;
if( CV_IS_MAT_HDR(arr) || CV_IS_MATND_HDR(arr) || CV_IS_SPARSE_MAT_HDR(arr))
type = CV_MAT_TYPE( ((CvMat*)arr)->type );
else if( CV_IS_IMAGE(arr))
{
IplImage* img = (IplImage*)arr;
type = CV_MAKETYPE( IPL2CV_DEPTH(img->depth), img->nChannels );
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
return type;
}
// Returns a number of array dimensions
CV_IMPL int
cvGetDims( const CvArr* arr, int* sizes )
{
int dims = -1;
if( CV_IS_MAT_HDR( arr ))
{
CvMat* mat = (CvMat*)arr;
dims = 2;
if( sizes )
{
sizes[0] = mat->rows;
sizes[1] = mat->cols;
}
}
else if( CV_IS_IMAGE( arr ))
{
IplImage* img = (IplImage*)arr;
dims = 2;
if( sizes )
{
sizes[0] = img->height;
sizes[1] = img->width;
}
}
else if( CV_IS_MATND_HDR( arr ))
{
CvMatND* mat = (CvMatND*)arr;
dims = mat->dims;
if( sizes )
{
int i;
for( i = 0; i < dims; i++ )
sizes[i] = mat->dim[i].size;
}
}
else if( CV_IS_SPARSE_MAT_HDR( arr ))
{
CvSparseMat* mat = (CvSparseMat*)arr;
dims = mat->dims;
if( sizes )
memcpy( sizes, mat->size, dims*sizeof(sizes[0]));
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
return dims;
}
// Returns the size of particular array dimension
CV_IMPL int
cvGetDimSize( const CvArr* arr, int index )
{
int size = -1;
if( CV_IS_MAT( arr ))
{
CvMat *mat = (CvMat*)arr;
switch( index )
{
case 0:
size = mat->rows;
break;
case 1:
size = mat->cols;
break;
default:
CV_Error( CV_StsOutOfRange, "bad dimension index" );
}
}
else if( CV_IS_IMAGE( arr ))
{
IplImage* img = (IplImage*)arr;
switch( index )
{
case 0:
size = !img->roi ? img->height : img->roi->height;
break;
case 1:
size = !img->roi ? img->width : img->roi->width;
break;
default:
CV_Error( CV_StsOutOfRange, "bad dimension index" );
}
}
else if( CV_IS_MATND_HDR( arr ))
{
CvMatND* mat = (CvMatND*)arr;
if( (unsigned)index >= (unsigned)mat->dims )
CV_Error( CV_StsOutOfRange, "bad dimension index" );
size = mat->dim[index].size;
}
else if( CV_IS_SPARSE_MAT_HDR( arr ))
{
CvSparseMat* mat = (CvSparseMat*)arr;
if( (unsigned)index >= (unsigned)mat->dims )
CV_Error( CV_StsOutOfRange, "bad dimension index" );
size = mat->size[index];
}
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
return size;
}
// Returns the size of CvMat or IplImage
CV_IMPL CvSize
cvGetSize( const CvArr* arr )
{
CvSize size;
if( CV_IS_MAT_HDR_Z( arr ))
{
CvMat *mat = (CvMat*)arr;
size.width = mat->cols;
size.height = mat->rows;
}
else if( CV_IS_IMAGE_HDR( arr ))
{
IplImage* img = (IplImage*)arr;
if( img->roi )
{
size.width = img->roi->width;
size.height = img->roi->height;
}
else
{
size.width = img->width;
size.height = img->height;
}
}
else
CV_Error( CV_StsBadArg, "Array should be CvMat or IplImage" );
return size;
}
// Selects sub-array (no data is copied)
CV_IMPL CvMat*
cvGetSubRect( const CvArr* arr, CvMat* submat, CvRect rect )
{
CvMat* res = 0;
CvMat stub, *mat = (CvMat*)arr;
if( !CV_IS_MAT( mat ))
mat = cvGetMat( mat, &stub );
if( !submat )
CV_Error( CV_StsNullPtr, "" );
if( (rect.x|rect.y|rect.width|rect.height) < 0 )
CV_Error( CV_StsBadSize, "" );
if( rect.x + rect.width > mat->cols ||
rect.y + rect.height > mat->rows )
CV_Error( CV_StsBadSize, "" );
{
/*
int* refcount = mat->refcount;
if( refcount )
++*refcount;
cvDecRefData( submat );
*/
submat->data.ptr = mat->data.ptr + (size_t)rect.y*mat->step +
rect.x*CV_ELEM_SIZE(mat->type);
submat->step = mat->step;
submat->type = (mat->type & (rect.width < mat->cols ? ~CV_MAT_CONT_FLAG : -1)) |
(rect.height <= 1 ? CV_MAT_CONT_FLAG : 0);
submat->rows = rect.height;
submat->cols = rect.width;
submat->refcount = 0;
res = submat;
}
return res;
}
// Selects array's row span.
CV_IMPL CvMat*
cvGetRows( const CvArr* arr, CvMat* submat,
int start_row, int end_row, int delta_row )
{
CvMat* res = 0;
CvMat stub, *mat = (CvMat*)arr;
if( !CV_IS_MAT( mat ))
mat = cvGetMat( mat, &stub );
if( !submat )
CV_Error( CV_StsNullPtr, "" );
if( (unsigned)start_row >= (unsigned)mat->rows ||
(unsigned)end_row > (unsigned)mat->rows || delta_row <= 0 )
CV_Error( CV_StsOutOfRange, "" );
{
/*
int* refcount = mat->refcount;
if( refcount )
++*refcount;
cvDecRefData( submat );
*/
if( delta_row == 1 )
{
submat->rows = end_row - start_row;
submat->step = mat->step;
}
else
{
submat->rows = (end_row - start_row + delta_row - 1)/delta_row;
submat->step = mat->step * delta_row;
}
submat->cols = mat->cols;
submat->step &= submat->rows > 1 ? -1 : 0;
submat->data.ptr = mat->data.ptr + (size_t)start_row*mat->step;
submat->type = (mat->type | (submat->rows == 1 ? CV_MAT_CONT_FLAG : 0)) &
(delta_row != 1 && submat->rows > 1 ? ~CV_MAT_CONT_FLAG : -1);
submat->refcount = 0;
submat->hdr_refcount = 0;
res = submat;
}
return res;
}
// Selects array's column span.
CV_IMPL CvMat*
cvGetCols( const CvArr* arr, CvMat* submat, int start_col, int end_col )
{
CvMat* res = 0;
CvMat stub, *mat = (CvMat*)arr;
int cols;
if( !CV_IS_MAT( mat ))
mat = cvGetMat( mat, &stub );
if( !submat )
CV_Error( CV_StsNullPtr, "" );
cols = mat->cols;
if( (unsigned)start_col >= (unsigned)cols ||
(unsigned)end_col > (unsigned)cols )
CV_Error( CV_StsOutOfRange, "" );
{
/*
int* refcount = mat->refcount;
if( refcount )
++*refcount;
cvDecRefData( submat );
*/
submat->rows = mat->rows;
submat->cols = end_col - start_col;
submat->step = mat->step;
submat->data.ptr = mat->data.ptr + (size_t)start_col*CV_ELEM_SIZE(mat->type);
submat->type = mat->type & (submat->rows > 1 && submat->cols < cols ? ~CV_MAT_CONT_FLAG : -1);
submat->refcount = 0;
submat->hdr_refcount = 0;
res = submat;
}
return res;
}
// Selects array diagonal
CV_IMPL CvMat*
cvGetDiag( const CvArr* arr, CvMat* submat, int diag )
{
CvMat* res = 0;
CvMat stub, *mat = (CvMat*)arr;
int len, pix_size;
if( !CV_IS_MAT( mat ))
mat = cvGetMat( mat, &stub );
if( !submat )
CV_Error( CV_StsNullPtr, "" );
pix_size = CV_ELEM_SIZE(mat->type);
/*{
int* refcount = mat->refcount;
if( refcount )
++*refcount;
cvDecRefData( submat );
}*/
if( diag >= 0 )
{
len = mat->cols - diag;
if( len <= 0 )
CV_Error( CV_StsOutOfRange, "" );
len = CV_IMIN( len, mat->rows );
submat->data.ptr = mat->data.ptr + diag*pix_size;
}
else
{
len = mat->rows + diag;
if( len <= 0 )
CV_Error( CV_StsOutOfRange, "" );
len = CV_IMIN( len, mat->cols );
submat->data.ptr = mat->data.ptr - diag*mat->step;
}
submat->rows = len;
submat->cols = 1;
submat->step = mat->step + (submat->rows > 1 ? pix_size : 0);
submat->type = mat->type;
if( submat->rows > 1 )
submat->type &= ~CV_MAT_CONT_FLAG;
else
submat->type |= CV_MAT_CONT_FLAG;
submat->refcount = 0;
submat->hdr_refcount = 0;
res = submat;
return res;
}
/****************************************************************************************\
* Operations on CvScalar and accessing array elements *
\****************************************************************************************/
// Converts CvScalar to specified type
CV_IMPL void
cvScalarToRawData( const CvScalar* scalar, void* data, int type, int extend_to_12 )
{
type = CV_MAT_TYPE(type);
int cn = CV_MAT_CN( type );
int depth = type & CV_MAT_DEPTH_MASK;
assert( scalar && data );
if( (unsigned)(cn - 1) >= 4 )
CV_Error( CV_StsOutOfRange, "The number of channels must be 1, 2, 3 or 4" );
switch( depth )
{
case CV_8UC1:
while( cn-- )
{
int t = cvRound( scalar->val[cn] );
((uchar*)data)[cn] = cv::saturate_cast<uchar>(t);
}
break;
case CV_8SC1:
while( cn-- )
{
int t = cvRound( scalar->val[cn] );
((char*)data)[cn] = cv::saturate_cast<schar>(t);
}
break;
case CV_16UC1:
while( cn-- )
{
int t = cvRound( scalar->val[cn] );
((ushort*)data)[cn] = cv::saturate_cast<ushort>(t);
}
break;
case CV_16SC1:
while( cn-- )
{
int t = cvRound( scalar->val[cn] );
((short*)data)[cn] = cv::saturate_cast<short>(t);
}
break;
case CV_32SC1:
while( cn-- )
((int*)data)[cn] = cvRound( scalar->val[cn] );
break;
case CV_32FC1:
while( cn-- )
((float*)data)[cn] = (float)(scalar->val[cn]);
break;
case CV_64FC1:
while( cn-- )
((double*)data)[cn] = (double)(scalar->val[cn]);
break;
default:
assert(0);
CV_Error( CV_BadDepth, "" );
}
if( extend_to_12 )
{
int pix_size = CV_ELEM_SIZE(type);
int offset = CV_ELEM_SIZE1(depth)*12;
do
{
offset -= pix_size;
memcpy((char*)data + offset, data, pix_size);
}
while( offset > pix_size );
}
}
// Converts data of specified type to CvScalar
CV_IMPL void
cvRawDataToScalar( const void* data, int flags, CvScalar* scalar )
{
int cn = CV_MAT_CN( flags );
assert( scalar && data );
if( (unsigned)(cn - 1) >= 4 )
CV_Error( CV_StsOutOfRange, "The number of channels must be 1, 2, 3 or 4" );
memset( scalar->val, 0, sizeof(scalar->val));
switch( CV_MAT_DEPTH( flags ))
{
case CV_8U:
while( cn-- )
scalar->val[cn] = CV_8TO32F(((uchar*)data)[cn]);
break;
case CV_8S:
while( cn-- )
scalar->val[cn] = CV_8TO32F(((char*)data)[cn]);
break;
case CV_16U:
while( cn-- )
scalar->val[cn] = ((ushort*)data)[cn];
break;
case CV_16S:
while( cn-- )
scalar->val[cn] = ((short*)data)[cn];
break;
case CV_32S:
while( cn-- )
scalar->val[cn] = ((int*)data)[cn];
break;
case CV_32F:
while( cn-- )
scalar->val[cn] = ((float*)data)[cn];
break;
case CV_64F:
while( cn-- )
scalar->val[cn] = ((double*)data)[cn];
break;
default:
assert(0);
CV_Error( CV_BadDepth, "" );
}
}
static double icvGetReal( const void* data, int type )
{
switch( type )
{
case CV_8U:
return *(uchar*)data;
case CV_8S:
return *(char*)data;
case CV_16U:
return *(ushort*)data;
case CV_16S:
return *(short*)data;
case CV_32S:
return *(int*)data;
case CV_32F:
return *(float*)data;
case CV_64F:
return *(double*)data;
}
return 0;
}
static void icvSetReal( double value, const void* data, int type )
{
if( type < CV_32F )
{
int ivalue = cvRound(value);
switch( type )
{
case CV_8U:
*(uchar*)data = cv::saturate_cast<uchar>(ivalue);
break;
case CV_8S:
*(schar*)data = cv::saturate_cast<schar>(ivalue);
break;
case CV_16U:
*(ushort*)data = cv::saturate_cast<ushort>(ivalue);
break;
case CV_16S:
*(short*)data = cv::saturate_cast<short>(ivalue);
break;
case CV_32S:
*(int*)data = cv::saturate_cast<int>(ivalue);
break;
}
}
else
{
switch( type )
{
case CV_32F:
*(float*)data = (float)value;
break;
case CV_64F:
*(double*)data = value;
break;
}
}
}
// Returns pointer to specified element of array (linear index is used)
CV_IMPL uchar*
cvPtr1D( const CvArr* arr, int idx, int* _type )
{
uchar* ptr = 0;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
int type = CV_MAT_TYPE(mat->type);
int pix_size = CV_ELEM_SIZE(type);
if( _type )
*_type = type;
// the first part is mul-free sufficient check
// that the index is within the matrix
if( (unsigned)idx >= (unsigned)(mat->rows + mat->cols - 1) &&
(unsigned)idx >= (unsigned)(mat->rows*mat->cols))
CV_Error( CV_StsOutOfRange, "index is out of range" );
if( CV_IS_MAT_CONT(mat->type))
{
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else
{
int row, col;
if( mat->cols == 1 )
row = idx, col = 0;
else
row = idx/mat->cols, col = idx - row*mat->cols;
ptr = mat->data.ptr + (size_t)row*mat->step + col*pix_size;
}
}
else if( CV_IS_IMAGE_HDR( arr ))
{
IplImage* img = (IplImage*)arr;
int width = !img->roi ? img->width : img->roi->width;
int y = idx/width, x = idx - y*width;
ptr = cvPtr2D( arr, y, x, _type );
}
else if( CV_IS_MATND( arr ))
{
CvMatND* mat = (CvMatND*)arr;
int j, type = CV_MAT_TYPE(mat->type);
size_t size = mat->dim[0].size;
if( _type )
*_type = type;
for( j = 1; j < mat->dims; j++ )
size *= mat->dim[j].size;
if((unsigned)idx >= (unsigned)size )
CV_Error( CV_StsOutOfRange, "index is out of range" );
if( CV_IS_MAT_CONT(mat->type))
{
int pix_size = CV_ELEM_SIZE(type);
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else
{
ptr = mat->data.ptr;
for( j = mat->dims - 1; j >= 0; j-- )
{
int sz = mat->dim[j].size;
if( sz )
{
int t = idx/sz;
ptr += (idx - t*sz)*mat->dim[j].step;
idx = t;
}
}
}
}
else if( CV_IS_SPARSE_MAT( arr ))
{
CvSparseMat* m = (CvSparseMat*)arr;
if( m->dims == 1 )
ptr = icvGetNodePtr( (CvSparseMat*)arr, &idx, _type, 1, 0 );
else
{
int i, n = m->dims;
CV_DbgAssert( n <= CV_MAX_DIM_HEAP );
int _idx[CV_MAX_DIM_HEAP];
for( i = n - 1; i >= 0; i-- )
{
int t = idx / m->size[i];
_idx[i] = idx - t*m->size[i];
idx = t;
}
ptr = icvGetNodePtr( (CvSparseMat*)arr, _idx, _type, 1, 0 );
}
}
else
{
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
return ptr;
}
// Returns pointer to specified element of 2d array
CV_IMPL uchar*
cvPtr2D( const CvArr* arr, int y, int x, int* _type )
{
uchar* ptr = 0;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
int type;
if( (unsigned)y >= (unsigned)(mat->rows) ||
(unsigned)x >= (unsigned)(mat->cols) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
type = CV_MAT_TYPE(mat->type);
if( _type )
*_type = type;
ptr = mat->data.ptr + (size_t)y*mat->step + x*CV_ELEM_SIZE(type);
}
else if( CV_IS_IMAGE( arr ))
{
IplImage* img = (IplImage*)arr;
int pix_size = (img->depth & 255) >> 3;
int width, height;
ptr = (uchar*)img->imageData;
if( img->dataOrder == 0 )
pix_size *= img->nChannels;
if( img->roi )
{
width = img->roi->width;
height = img->roi->height;
ptr += img->roi->yOffset*img->widthStep +
img->roi->xOffset*pix_size;
if( img->dataOrder )
{
int coi = img->roi->coi;
if( !coi )
CV_Error( CV_BadCOI,
"COI must be non-null in case of planar images" );
ptr += (coi - 1)*img->imageSize;
}
}
else
{
width = img->width;
height = img->height;
}
if( (unsigned)y >= (unsigned)height ||
(unsigned)x >= (unsigned)width )
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr += y*img->widthStep + x*pix_size;
if( _type )
{
int type = IPL2CV_DEPTH(img->depth);
if( type < 0 || (unsigned)(img->nChannels - 1) > 3 )
CV_Error( CV_StsUnsupportedFormat, "" );
*_type = CV_MAKETYPE( type, img->nChannels );
}
}
else if( CV_IS_MATND( arr ))
{
CvMatND* mat = (CvMatND*)arr;
if( mat->dims != 2 ||
(unsigned)y >= (unsigned)(mat->dim[0].size) ||
(unsigned)x >= (unsigned)(mat->dim[1].size) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)y*mat->dim[0].step + x*mat->dim[1].step;
if( _type )
*_type = CV_MAT_TYPE(mat->type);
}
else if( CV_IS_SPARSE_MAT( arr ))
{
int idx[] = { y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, _type, 1, 0 );
}
else
{
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
return ptr;
}
// Returns pointer to specified element of 3d array
CV_IMPL uchar*
cvPtr3D( const CvArr* arr, int z, int y, int x, int* _type )
{
uchar* ptr = 0;
if( CV_IS_MATND( arr ))
{
CvMatND* mat = (CvMatND*)arr;
if( mat->dims != 3 ||
(unsigned)z >= (unsigned)(mat->dim[0].size) ||
(unsigned)y >= (unsigned)(mat->dim[1].size) ||
(unsigned)x >= (unsigned)(mat->dim[2].size) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)z*mat->dim[0].step +
(size_t)y*mat->dim[1].step + x*mat->dim[2].step;
if( _type )
*_type = CV_MAT_TYPE(mat->type);
}
else if( CV_IS_SPARSE_MAT( arr ))
{
int idx[] = { z, y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, _type, 1, 0 );
}
else
{
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
}
return ptr;
}
// Returns pointer to specified element of n-d array
CV_IMPL uchar*
cvPtrND( const CvArr* arr, const int* idx, int* _type,
int create_node, unsigned* precalc_hashval )
{
uchar* ptr = 0;
if( !idx )
CV_Error( CV_StsNullPtr, "NULL pointer to indices" );
if( CV_IS_SPARSE_MAT( arr ))
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx,
_type, create_node, precalc_hashval );
else if( CV_IS_MATND( arr ))
{
CvMatND* mat = (CvMatND*)arr;
int i;
ptr = mat->data.ptr;
for( i = 0; i < mat->dims; i++ )
{
if( (unsigned)idx[i] >= (unsigned)(mat->dim[i].size) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr += (size_t)idx[i]*mat->dim[i].step;
}
if( _type )
*_type = CV_MAT_TYPE(mat->type);
}
else if( CV_IS_MAT_HDR(arr) || CV_IS_IMAGE_HDR(arr) )
ptr = cvPtr2D( arr, idx[0], idx[1], _type );
else
CV_Error( CV_StsBadArg, "unrecognized or unsupported array type" );
return ptr;
}
// Returns specifed element of n-D array given linear index
CV_IMPL CvScalar
cvGet1D( const CvArr* arr, int idx )
{
CvScalar scalar(0);
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ) && CV_IS_MAT_CONT( ((CvMat*)arr)->type ))
{
CvMat* mat = (CvMat*)arr;
type = CV_MAT_TYPE(mat->type);
int pix_size = CV_ELEM_SIZE(type);
// the first part is mul-free sufficient check
// that the index is within the matrix
if( (unsigned)idx >= (unsigned)(mat->rows + mat->cols - 1) &&
(unsigned)idx >= (unsigned)(mat->rows*mat->cols))
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else if( !CV_IS_SPARSE_MAT( arr ) || ((CvSparseMat*)arr)->dims > 1 )
ptr = cvPtr1D( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, &idx, &type, 0, 0 );
if( ptr )
cvRawDataToScalar( ptr, type, &scalar );
return scalar;
}
// Returns specifed element of 2D array
CV_IMPL CvScalar
cvGet2D( const CvArr* arr, int y, int x )
{
CvScalar scalar(0);
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
if( (unsigned)y >= (unsigned)(mat->rows) ||
(unsigned)x >= (unsigned)(mat->cols) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
type = CV_MAT_TYPE(mat->type);
ptr = mat->data.ptr + (size_t)y*mat->step + x*CV_ELEM_SIZE(type);
}
else if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr2D( arr, y, x, &type );
else
{
int idx[] = { y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
}
if( ptr )
cvRawDataToScalar( ptr, type, &scalar );
return scalar;
}
// Returns specifed element of 3D array
CV_IMPL CvScalar
cvGet3D( const CvArr* arr, int z, int y, int x )
{
CvScalar scalar(0);
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr3D( arr, z, y, x, &type );
else
{
int idx[] = { z, y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
}
if( ptr )
cvRawDataToScalar( ptr, type, &scalar );
return scalar;
}
// Returns specifed element of nD array
CV_IMPL CvScalar
cvGetND( const CvArr* arr, const int* idx )
{
CvScalar scalar(0);
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtrND( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
if( ptr )
cvRawDataToScalar( ptr, type, &scalar );
return scalar;
}
// Returns specifed element of n-D array given linear index
CV_IMPL double
cvGetReal1D( const CvArr* arr, int idx )
{
double value = 0;
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ) && CV_IS_MAT_CONT( ((CvMat*)arr)->type ))
{
CvMat* mat = (CvMat*)arr;
type = CV_MAT_TYPE(mat->type);
int pix_size = CV_ELEM_SIZE(type);
// the first part is mul-free sufficient check
// that the index is within the matrix
if( (unsigned)idx >= (unsigned)(mat->rows + mat->cols - 1) &&
(unsigned)idx >= (unsigned)(mat->rows*mat->cols))
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else if( !CV_IS_SPARSE_MAT( arr ) || ((CvSparseMat*)arr)->dims > 1 )
ptr = cvPtr1D( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, &idx, &type, 0, 0 );
if( ptr )
{
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvGetReal* support only single-channel arrays" );
value = icvGetReal( ptr, type );
}
return value;
}
// Returns specifed element of 2D array
CV_IMPL double
cvGetReal2D( const CvArr* arr, int y, int x )
{
double value = 0;
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
if( (unsigned)y >= (unsigned)(mat->rows) ||
(unsigned)x >= (unsigned)(mat->cols) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
type = CV_MAT_TYPE(mat->type);
ptr = mat->data.ptr + (size_t)y*mat->step + x*CV_ELEM_SIZE(type);
}
else if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr2D( arr, y, x, &type );
else
{
int idx[] = { y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
}
if( ptr )
{
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvGetReal* support only single-channel arrays" );
value = icvGetReal( ptr, type );
}
return value;
}
// Returns specifed element of 3D array
CV_IMPL double
cvGetReal3D( const CvArr* arr, int z, int y, int x )
{
double value = 0;
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr3D( arr, z, y, x, &type );
else
{
int idx[] = { z, y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
}
if( ptr )
{
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvGetReal* support only single-channel arrays" );
value = icvGetReal( ptr, type );
}
return value;
}
// Returns specifed element of nD array
CV_IMPL double
cvGetRealND( const CvArr* arr, const int* idx )
{
double value = 0;
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtrND( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, 0, 0 );
if( ptr )
{
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvGetReal* support only single-channel arrays" );
value = icvGetReal( ptr, type );
}
return value;
}
// Assigns new value to specifed element of nD array given linear index
CV_IMPL void
cvSet1D( CvArr* arr, int idx, CvScalar scalar )
{
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ) && CV_IS_MAT_CONT( ((CvMat*)arr)->type ))
{
CvMat* mat = (CvMat*)arr;
type = CV_MAT_TYPE(mat->type);
int pix_size = CV_ELEM_SIZE(type);
// the first part is mul-free sufficient check
// that the index is within the matrix
if( (unsigned)idx >= (unsigned)(mat->rows + mat->cols - 1) &&
(unsigned)idx >= (unsigned)(mat->rows*mat->cols))
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else if( !CV_IS_SPARSE_MAT( arr ) || ((CvSparseMat*)arr)->dims > 1 )
ptr = cvPtr1D( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, &idx, &type, -1, 0 );
cvScalarToRawData( &scalar, ptr, type );
}
// Assigns new value to specifed element of 2D array
CV_IMPL void
cvSet2D( CvArr* arr, int y, int x, CvScalar scalar )
{
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
if( (unsigned)y >= (unsigned)(mat->rows) ||
(unsigned)x >= (unsigned)(mat->cols) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
type = CV_MAT_TYPE(mat->type);
ptr = mat->data.ptr + (size_t)y*mat->step + x*CV_ELEM_SIZE(type);
}
else if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr2D( arr, y, x, &type );
else
{
int idx[] = { y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
}
cvScalarToRawData( &scalar, ptr, type );
}
// Assigns new value to specifed element of 3D array
CV_IMPL void
cvSet3D( CvArr* arr, int z, int y, int x, CvScalar scalar )
{
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr3D( arr, z, y, x, &type );
else
{
int idx[] = { z, y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
}
cvScalarToRawData( &scalar, ptr, type );
}
// Assigns new value to specifed element of nD array
CV_IMPL void
cvSetND( CvArr* arr, const int* idx, CvScalar scalar )
{
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtrND( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
cvScalarToRawData( &scalar, ptr, type );
}
CV_IMPL void
cvSetReal1D( CvArr* arr, int idx, double value )
{
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ) && CV_IS_MAT_CONT( ((CvMat*)arr)->type ))
{
CvMat* mat = (CvMat*)arr;
type = CV_MAT_TYPE(mat->type);
int pix_size = CV_ELEM_SIZE(type);
// the first part is mul-free sufficient check
// that the index is within the matrix
if( (unsigned)idx >= (unsigned)(mat->rows + mat->cols - 1) &&
(unsigned)idx >= (unsigned)(mat->rows*mat->cols))
CV_Error( CV_StsOutOfRange, "index is out of range" );
ptr = mat->data.ptr + (size_t)idx*pix_size;
}
else if( !CV_IS_SPARSE_MAT( arr ) || ((CvSparseMat*)arr)->dims > 1 )
ptr = cvPtr1D( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, &idx, &type, -1, 0 );
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvSetReal* support only single-channel arrays" );
if( ptr )
icvSetReal( value, ptr, type );
}
CV_IMPL void
cvSetReal2D( CvArr* arr, int y, int x, double value )
{
int type = 0;
uchar* ptr;
if( CV_IS_MAT( arr ))
{
CvMat* mat = (CvMat*)arr;
if( (unsigned)y >= (unsigned)(mat->rows) ||
(unsigned)x >= (unsigned)(mat->cols) )
CV_Error( CV_StsOutOfRange, "index is out of range" );
type = CV_MAT_TYPE(mat->type);
ptr = mat->data.ptr + (size_t)y*mat->step + x*CV_ELEM_SIZE(type);
}
else if( !CV_IS_SPARSE_MAT( arr ))
{
ptr = cvPtr2D( arr, y, x, &type );
}
else
{
int idx[] = { y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
}
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvSetReal* support only single-channel arrays" );
if( ptr )
icvSetReal( value, ptr, type );
}
CV_IMPL void
cvSetReal3D( CvArr* arr, int z, int y, int x, double value )
{
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtr3D( arr, z, y, x, &type );
else
{
int idx[] = { z, y, x };
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
}
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvSetReal* support only single-channel arrays" );
if( ptr )
icvSetReal( value, ptr, type );
}
CV_IMPL void
cvSetRealND( CvArr* arr, const int* idx, double value )
{
int type = 0;
uchar* ptr;
if( !CV_IS_SPARSE_MAT( arr ))
ptr = cvPtrND( arr, idx, &type );
else
ptr = icvGetNodePtr( (CvSparseMat*)arr, idx, &type, -1, 0 );
if( CV_MAT_CN( type ) > 1 )
CV_Error( CV_BadNumChannels, "cvSetReal* support only single-channel arrays" );
if( ptr )
icvSetReal( value, ptr, type );
}
CV_IMPL void
cvClearND( CvArr* arr, const int* idx )
{
if( !CV_IS_SPARSE_MAT( arr ))
{
int type;
uchar* ptr;
ptr = cvPtrND( arr, idx, &type );
if( ptr )
memset( ptr, 0, CV_ELEM_SIZE(type) );
}
else
icvDeleteNode( (CvSparseMat*)arr, idx, 0 );
}
/****************************************************************************************\
* Conversion to CvMat or IplImage *
\****************************************************************************************/
// convert array (CvMat or IplImage) to CvMat
CV_IMPL CvMat*
cvGetMat( const CvArr* array, CvMat* mat,
int* pCOI, int allowND )
{
CvMat* result = 0;
CvMat* src = (CvMat*)array;
int coi = 0;
if( !mat || !src )
CV_Error( CV_StsNullPtr, "NULL array pointer is passed" );
if( CV_IS_MAT_HDR(src))
{
if( !src->data.ptr )
CV_Error( CV_StsNullPtr, "The matrix has NULL data pointer" );
result = (CvMat*)src;
}
else if( CV_IS_IMAGE_HDR(src) )
{
const IplImage* img = (const IplImage*)src;
int depth, order;
if( img->imageData == 0 )
CV_Error( CV_StsNullPtr, "The image has NULL data pointer" );
depth = IPL2CV_DEPTH( img->depth );
if( depth < 0 )
CV_Error( CV_BadDepth, "" );
order = img->dataOrder & (img->nChannels > 1 ? -1 : 0);
if( img->roi )
{
if( order == IPL_DATA_ORDER_PLANE )
{
int type = depth;
if( img->roi->coi == 0 )
CV_Error( CV_StsBadFlag,
"Images with planar data layout should be used with COI selected" );
cvInitMatHeader( mat, img->roi->height,
img->roi->width, type,
img->imageData + (img->roi->coi-1)*img->imageSize +
img->roi->yOffset*img->widthStep +
img->roi->xOffset*CV_ELEM_SIZE(type),
img->widthStep );
}
else /* pixel order */
{
int type = CV_MAKETYPE( depth, img->nChannels );
coi = img->roi->coi;
if( img->nChannels > CV_CN_MAX )
CV_Error( CV_BadNumChannels,
"The image is interleaved and has over CV_CN_MAX channels" );
cvInitMatHeader( mat, img->roi->height, img->roi->width,
type, img->imageData +
img->roi->yOffset*img->widthStep +
img->roi->xOffset*CV_ELEM_SIZE(type),
img->widthStep );
}
}
else
{
int type = CV_MAKETYPE( depth, img->nChannels );
if( order != IPL_DATA_ORDER_PIXEL )
CV_Error( CV_StsBadFlag, "Pixel order should be used with coi == 0" );
cvInitMatHeader( mat, img->height, img->width, type,
img->imageData, img->widthStep );
}
result = mat;
}
else if( allowND && CV_IS_MATND_HDR(src) )
{
CvMatND* matnd = (CvMatND*)src;
int i;
int size1 = matnd->dim[0].size, size2 = 1;
if( !src->data.ptr )
CV_Error( CV_StsNullPtr, "Input array has NULL data pointer" );
if( !CV_IS_MAT_CONT( matnd->type ))
CV_Error( CV_StsBadArg, "Only continuous nD arrays are supported here" );
if( matnd->dims > 2 )
for( i = 1; i < matnd->dims; i++ )
size2 *= matnd->dim[i].size;
else
size2 = matnd->dims == 1 ? 1 : matnd->dim[1].size;
mat->refcount = 0;
mat->hdr_refcount = 0;
mat->data.ptr = matnd->data.ptr;
mat->rows = size1;
mat->cols = size2;
mat->type = CV_MAT_TYPE(matnd->type) | CV_MAT_MAGIC_VAL | CV_MAT_CONT_FLAG;
mat->step = size2*CV_ELEM_SIZE(matnd->type);
mat->step &= size1 > 1 ? -1 : 0;
icvCheckHuge( mat );
result = mat;
}
else
CV_Error( CV_StsBadFlag, "Unrecognized or unsupported array type" );
if( pCOI )
*pCOI = coi;
return result;
}
CV_IMPL CvArr*
cvReshapeMatND( const CvArr* arr,
int sizeof_header, CvArr* _header,
int new_cn, int new_dims, int* new_sizes )
{
CvArr* result = 0;
int dims, coi = 0;
if( !arr || !_header )
CV_Error( CV_StsNullPtr, "NULL pointer to array or destination header" );
if( new_cn == 0 && new_dims == 0 )
CV_Error( CV_StsBadArg, "None of array parameters is changed: dummy call?" );
dims = cvGetDims( arr );
if( new_dims == 0 )
{
new_sizes = 0;
new_dims = dims;
}
else if( new_dims == 1 )
{
new_sizes = 0;
}
else
{
if( new_dims <= 0 || new_dims > CV_MAX_DIM )
CV_Error( CV_StsOutOfRange, "Non-positive or too large number of dimensions" );
if( !new_sizes )
CV_Error( CV_StsNullPtr, "New dimension sizes are not specified" );
}
if( new_dims <= 2 )
{
CvMat* mat = (CvMat*)arr;
CvMat header;
int* refcount = 0;
int hdr_refcount = 0;
int total_width, new_rows, cn;
if( sizeof_header != sizeof(CvMat) && sizeof_header != sizeof(CvMatND) )
CV_Error( CV_StsBadArg, "The output header should be CvMat or CvMatND" );
if( mat == (CvMat*)_header )
{
refcount = mat->refcount;
hdr_refcount = mat->hdr_refcount;
}
if( !CV_IS_MAT( mat ))
mat = cvGetMat( mat, &header, &coi, 1 );
cn = CV_MAT_CN( mat->type );
total_width = mat->cols * cn;
if( new_cn == 0 )
new_cn = cn;
if( new_sizes )
new_rows = new_sizes[0];
else if( new_dims == 1 )
new_rows = total_width*mat->rows/new_cn;
else
{
new_rows = mat->rows;
if( new_cn > total_width )
new_rows = mat->rows * total_width / new_cn;
}
if( new_rows != mat->rows )
{
int total_size = total_width * mat->rows;
if( !CV_IS_MAT_CONT( mat->type ))
CV_Error( CV_BadStep,
"The matrix is not continuous so the number of rows can not be changed" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( CV_StsBadArg, "The total number of matrix elements "
"is not divisible by the new number of rows" );
}
header.rows = new_rows;
header.cols = total_width / new_cn;
if( header.cols * new_cn != total_width ||
(new_sizes && header.cols != new_sizes[1]) )
CV_Error( CV_StsBadArg, "The total matrix width is not "
"divisible by the new number of columns" );
header.type = (mat->type & ~CV_MAT_TYPE_MASK) | CV_MAKETYPE(mat->type, new_cn);
header.step = header.cols * CV_ELEM_SIZE(mat->type);
header.step &= new_rows > 1 ? -1 : 0;
header.refcount = refcount;
header.hdr_refcount = hdr_refcount;
if( sizeof_header == sizeof(CvMat) )
*(CvMat*)_header = header;
else
{
CvMatND* __header = (CvMatND*)_header;
cvGetMatND(&header, __header, 0);
if( new_dims > 0 )
__header->dims = new_dims;
}
}
else
{
CvMatND* header = (CvMatND*)_header;
if( sizeof_header != sizeof(CvMatND))
CV_Error( CV_StsBadSize, "The output header should be CvMatND" );
if( !new_sizes )
{
if( !CV_IS_MATND( arr ))
CV_Error( CV_StsBadArg, "The input array must be CvMatND" );
{
CvMatND* mat = (CvMatND*)arr;
assert( new_cn > 0 );
int last_dim_size = mat->dim[mat->dims-1].size*CV_MAT_CN(mat->type);
int new_size = last_dim_size/new_cn;
if( new_size*new_cn != last_dim_size )
CV_Error( CV_StsBadArg,
"The last dimension full size is not divisible by new number of channels");
if( mat != header )
{
memcpy( header, mat, sizeof(*header));
header->refcount = 0;
header->hdr_refcount = 0;
}
header->dim[header->dims-1].size = new_size;
header->type = (header->type & ~CV_MAT_TYPE_MASK) | CV_MAKETYPE(header->type, new_cn);
}
}
else
{
CvMatND stub;
CvMatND* mat = (CvMatND*)arr;
int i, size1, size2;
int step;
if( new_cn != 0 )
CV_Error( CV_StsBadArg,
"Simultaneous change of shape and number of channels is not supported. "
"Do it by 2 separate calls" );
if( !CV_IS_MATND( mat ))
{
cvGetMatND( mat, &stub, &coi );
mat = &stub;
}
if( CV_IS_MAT_CONT( mat->type ))
CV_Error( CV_StsBadArg, "Non-continuous nD arrays are not supported" );
size1 = mat->dim[0].size;
for( i = 1; i < dims; i++ )
size1 *= mat->dim[i].size;
size2 = 1;
for( i = 0; i < new_dims; i++ )
{
if( new_sizes[i] <= 0 )
CV_Error( CV_StsBadSize,
"One of new dimension sizes is non-positive" );
size2 *= new_sizes[i];
}
if( size1 != size2 )
CV_Error( CV_StsBadSize,
"Number of elements in the original and reshaped array is different" );
if( header != mat )
{
header->refcount = 0;
header->hdr_refcount = 0;
}
header->dims = new_dims;
header->type = mat->type;
header->data.ptr = mat->data.ptr;
step = CV_ELEM_SIZE(header->type);
for( i = new_dims - 1; i >= 0; i-- )
{
header->dim[i].size = new_sizes[i];
header->dim[i].step = step;
step *= new_sizes[i];
}
}
}
if( coi )
CV_Error( CV_BadCOI, "COI is not supported by this operation" );
result = _header;
return result;
}
CV_IMPL CvMat*
cvReshape( const CvArr* array, CvMat* header,
int new_cn, int new_rows )
{
CvMat* result = 0;
CvMat *mat = (CvMat*)array;
int total_width, new_width;
if( !header )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_MAT( mat ))
{
int coi = 0;
mat = cvGetMat( mat, header, &coi, 1 );
if( coi )
CV_Error( CV_BadCOI, "COI is not supported" );
}
if( new_cn == 0 )
new_cn = CV_MAT_CN(mat->type);
else if( (unsigned)(new_cn - 1) > 3 )
CV_Error( CV_BadNumChannels, "" );
if( mat != header )
{
int hdr_refcount = header->hdr_refcount;
*header = *mat;
header->refcount = 0;
header->hdr_refcount = hdr_refcount;
}
total_width = mat->cols * CV_MAT_CN( mat->type );
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
new_rows = mat->rows * total_width / new_cn;
if( new_rows == 0 || new_rows == mat->rows )
{
header->rows = mat->rows;
header->step = mat->step;
}
else
{
int total_size = total_width * mat->rows;
if( !CV_IS_MAT_CONT( mat->type ))
CV_Error( CV_BadStep,
"The matrix is not continuous, thus its number of rows can not be changed" );
if( (unsigned)new_rows > (unsigned)total_size )
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( CV_StsBadArg, "The total number of matrix elements "
"is not divisible by the new number of rows" );
header->rows = new_rows;
header->step = total_width * CV_ELEM_SIZE1(mat->type);
}
new_width = total_width / new_cn;
if( new_width * new_cn != total_width )
CV_Error( CV_BadNumChannels,
"The total width is not divisible by the new number of channels" );
header->cols = new_width;
header->type = (mat->type & ~CV_MAT_TYPE_MASK) | CV_MAKETYPE(mat->type, new_cn);
result = header;
return result;
}
// convert array (CvMat or IplImage) to IplImage
CV_IMPL IplImage*
cvGetImage( const CvArr* array, IplImage* img )
{
IplImage* result = 0;
const IplImage* src = (const IplImage*)array;
int depth;
if( !img )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_IMAGE_HDR(src) )
{
const CvMat* mat = (const CvMat*)src;
if( !CV_IS_MAT_HDR(mat))
CV_Error( CV_StsBadFlag, "" );
if( mat->data.ptr == 0 )
CV_Error( CV_StsNullPtr, "" );
depth = cvIplDepth(mat->type);
cvInitImageHeader( img, cvSize(mat->cols, mat->rows),
depth, CV_MAT_CN(mat->type) );
cvSetData( img, mat->data.ptr, mat->step );
result = img;
}
else
{
result = (IplImage*)src;
}
return result;
}
/****************************************************************************************\
* IplImage-specific functions *
\****************************************************************************************/
static IplROI* icvCreateROI( int coi, int xOffset, int yOffset, int width, int height )
{
IplROI *roi = 0;
if( !CvIPL.createROI )
{
roi = (IplROI*)cvAlloc( sizeof(*roi));
roi->coi = coi;
roi->xOffset = xOffset;
roi->yOffset = yOffset;
roi->width = width;
roi->height = height;
}
else
{
roi = CvIPL.createROI( coi, xOffset, yOffset, width, height );
}
return roi;
}
static void
icvGetColorModel( int nchannels, const char** colorModel, const char** channelSeq )
{
static const char* tab[][2] =
{
{"GRAY", "GRAY"},
{"",""},
{"RGB","BGR"},
{"RGB","BGRA"}
};
nchannels--;
*colorModel = *channelSeq = "";
if( (unsigned)nchannels <= 3 )
{
*colorModel = tab[nchannels][0];
*channelSeq = tab[nchannels][1];
}
}
// create IplImage header
CV_IMPL IplImage *
cvCreateImageHeader( CvSize size, int depth, int channels )
{
IplImage *img = 0;
if( !CvIPL.createHeader )
{
img = (IplImage *)cvAlloc( sizeof( *img ));
cvInitImageHeader( img, size, depth, channels, IPL_ORIGIN_TL,
CV_DEFAULT_IMAGE_ROW_ALIGN );
}
else
{
const char *colorModel, *channelSeq;
icvGetColorModel( channels, &colorModel, &channelSeq );
img = CvIPL.createHeader( channels, 0, depth, (char*)colorModel, (char*)channelSeq,
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL,
CV_DEFAULT_IMAGE_ROW_ALIGN,
size.width, size.height, 0, 0, 0, 0 );
}
return img;
}
// create IplImage header and allocate underlying data
CV_IMPL IplImage *
cvCreateImage( CvSize size, int depth, int channels )
{
IplImage *img = cvCreateImageHeader( size, depth, channels );
assert( img );
cvCreateData( img );
return img;
}
// initalize IplImage header, allocated by the user
CV_IMPL IplImage*
cvInitImageHeader( IplImage * image, CvSize size, int depth,
int channels, int origin, int align )
{
const char *colorModel, *channelSeq;
if( !image )
CV_Error( CV_HeaderIsNull, "null pointer to header" );
memset( image, 0, sizeof( *image ));
image->nSize = sizeof( *image );
icvGetColorModel( channels, &colorModel, &channelSeq );
strncpy( image->colorModel, colorModel, 4 );
strncpy( image->channelSeq, channelSeq, 4 );
if( size.width < 0 || size.height < 0 )
CV_Error( CV_BadROISize, "Bad input roi" );
if( (depth != (int)IPL_DEPTH_1U && depth != (int)IPL_DEPTH_8U &&
depth != (int)IPL_DEPTH_8S && depth != (int)IPL_DEPTH_16U &&
depth != (int)IPL_DEPTH_16S && depth != (int)IPL_DEPTH_32S &&
depth != (int)IPL_DEPTH_32F && depth != (int)IPL_DEPTH_64F) ||
channels < 0 )
CV_Error( CV_BadDepth, "Unsupported format" );
if( origin != CV_ORIGIN_BL && origin != CV_ORIGIN_TL )
CV_Error( CV_BadOrigin, "Bad input origin" );
if( align != 4 && align != 8 )
CV_Error( CV_BadAlign, "Bad input align" );
image->width = size.width;
image->height = size.height;
if( image->roi )
{
image->roi->coi = 0;
image->roi->xOffset = image->roi->yOffset = 0;
image->roi->width = size.width;
image->roi->height = size.height;
}
image->nChannels = MAX( channels, 1 );
image->depth = depth;
image->align = align;
image->widthStep = (((image->width * image->nChannels *
(image->depth & ~IPL_DEPTH_SIGN) + 7)/8)+ align - 1) & (~(align - 1));
image->origin = origin;
image->imageSize = image->widthStep * image->height;
return image;
}
CV_IMPL void
cvReleaseImageHeader( IplImage** image )
{
if( !image )
CV_Error( CV_StsNullPtr, "" );
if( *image )
{
IplImage* img = *image;
*image = 0;
if( !CvIPL.deallocate )
{
cvFree( &img->roi );
cvFree( &img );
}
else
{
CvIPL.deallocate( img, IPL_IMAGE_HEADER | IPL_IMAGE_ROI );
}
}
}
CV_IMPL void
cvReleaseImage( IplImage ** image )
{
if( !image )
CV_Error( CV_StsNullPtr, "" );
if( *image )
{
IplImage* img = *image;
*image = 0;
cvReleaseData( img );
cvReleaseImageHeader( &img );
}
}
CV_IMPL void
cvSetImageROI( IplImage* image, CvRect rect )
{
if( !image )
CV_Error( CV_HeaderIsNull, "" );
// allow zero ROI width or height
CV_Assert( rect.width >= 0 && rect.height >= 0 &&
rect.x < image->width && rect.y < image->height &&
rect.x + rect.width >= (int)(rect.width > 0) &&
rect.y + rect.height >= (int)(rect.height > 0) );
rect.width += rect.x;
rect.height += rect.y;
rect.x = std::max(rect.x, 0);
rect.y = std::max(rect.y, 0);
rect.width = std::min(rect.width, image->width);
rect.height = std::min(rect.height, image->height);
rect.width -= rect.x;
rect.height -= rect.y;
if( image->roi )
{
image->roi->xOffset = rect.x;
image->roi->yOffset = rect.y;
image->roi->width = rect.width;
image->roi->height = rect.height;
}
else
image->roi = icvCreateROI( 0, rect.x, rect.y, rect.width, rect.height );
}
CV_IMPL void
cvResetImageROI( IplImage* image )
{
if( !image )
CV_Error( CV_HeaderIsNull, "" );
if( image->roi )
{
if( !CvIPL.deallocate )
{
cvFree( &image->roi );
}
else
{
CvIPL.deallocate( image, IPL_IMAGE_ROI );
image->roi = 0;
}
}
}
CV_IMPL CvRect
cvGetImageROI( const IplImage* img )
{
CvRect rect;
if( !img )
CV_Error( CV_StsNullPtr, "Null pointer to image" );
if( img->roi )
rect = cvRect( img->roi->xOffset, img->roi->yOffset,
img->roi->width, img->roi->height );
else
rect = cvRect( 0, 0, img->width, img->height );
return rect;
}
CV_IMPL void
cvSetImageCOI( IplImage* image, int coi )
{
if( !image )
CV_Error( CV_HeaderIsNull, "" );
if( (unsigned)coi > (unsigned)(image->nChannels) )
CV_Error( CV_BadCOI, "" );
if( image->roi || coi != 0 )
{
if( image->roi )
{
image->roi->coi = coi;
}
else
{
image->roi = icvCreateROI( coi, 0, 0, image->width, image->height );
}
}
}
CV_IMPL int
cvGetImageCOI( const IplImage* image )
{
if( !image )
CV_Error( CV_HeaderIsNull, "" );
return image->roi ? image->roi->coi : 0;
}
CV_IMPL IplImage*
cvCloneImage( const IplImage* src )
{
IplImage* dst = 0;
if( !CV_IS_IMAGE_HDR( src ))
CV_Error( CV_StsBadArg, "Bad image header" );
if( !CvIPL.cloneImage )
{
dst = (IplImage*)cvAlloc( sizeof(*dst));
memcpy( dst, src, sizeof(*src));
dst->imageData = dst->imageDataOrigin = 0;
dst->roi = 0;
if( src->roi )
{
dst->roi = icvCreateROI( src->roi->coi, src->roi->xOffset,
src->roi->yOffset, src->roi->width, src->roi->height );
}
if( src->imageData )
{
int size = src->imageSize;
cvCreateData( dst );
memcpy( dst->imageData, src->imageData, size );
}
}
else
dst = CvIPL.cloneImage( src );
return dst;
}
/****************************************************************************************\
* Additional operations on CvTermCriteria *
\****************************************************************************************/
CV_IMPL CvTermCriteria
cvCheckTermCriteria( CvTermCriteria criteria, double default_eps,
int default_max_iters )
{
CvTermCriteria crit;
crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
crit.max_iter = default_max_iters;
crit.epsilon = (float)default_eps;
if( (criteria.type & ~(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER)) != 0 )
CV_Error( CV_StsBadArg,
"Unknown type of term criteria" );
if( (criteria.type & CV_TERMCRIT_ITER) != 0 )
{
if( criteria.max_iter <= 0 )
CV_Error( CV_StsBadArg,
"Iterations flag is set and maximum number of iterations is <= 0" );
crit.max_iter = criteria.max_iter;
}
if( (criteria.type & CV_TERMCRIT_EPS) != 0 )
{
if( criteria.epsilon < 0 )
CV_Error( CV_StsBadArg, "Accuracy flag is set and epsilon is < 0" );
crit.epsilon = criteria.epsilon;
}
if( (criteria.type & (CV_TERMCRIT_EPS | CV_TERMCRIT_ITER)) == 0 )
CV_Error( CV_StsBadArg,
"Neither accuracy nor maximum iterations "
"number flags are set in criteria type" );
crit.epsilon = (float)MAX( 0, crit.epsilon );
crit.max_iter = MAX( 1, crit.max_iter );
return crit;
}
namespace cv
{
template<> void DefaultDeleter<CvMat>::operator ()(CvMat* obj) const
{ cvReleaseMat(&obj); }
template<> void DefaultDeleter<IplImage>::operator ()(IplImage* obj) const
{ cvReleaseImage(&obj); }
template<> void DefaultDeleter<CvMatND>::operator ()(CvMatND* obj) const
{ cvReleaseMatND(&obj); }
template<> void DefaultDeleter<CvSparseMat>::operator ()(CvSparseMat* obj) const
{ cvReleaseSparseMat(&obj); }
template<> void DefaultDeleter<CvMemStorage>::operator ()(CvMemStorage* obj) const
{ cvReleaseMemStorage(&obj); }
template<> void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const
{ cvReleaseFileStorage(&obj); }
}
/* End of file. */