2227 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2227 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHVEC_H
 | |
| #define INCLUDED_IMATHVEC_H
 | |
| 
 | |
| //----------------------------------------------------
 | |
| //
 | |
| //	2D, 3D and 4D point/vector class templates
 | |
| //
 | |
| //----------------------------------------------------
 | |
| 
 | |
| #include "ImathExc.h"
 | |
| #include "ImathLimits.h"
 | |
| #include "ImathMath.h"
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
 | |
| // suppress exception specification warnings
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4290)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| template <class T> class Vec2;
 | |
| template <class T> class Vec3;
 | |
| template <class T> class Vec4;
 | |
| 
 | |
| enum InfException {INF_EXCEPTION};
 | |
| 
 | |
| 
 | |
| template <class T> class Vec2
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------------
 | |
|     // Access to elements
 | |
|     //-------------------
 | |
| 
 | |
|     T			x, y;
 | |
| 
 | |
|     T &			operator [] (int i);
 | |
|     const T &		operator [] (int i) const;
 | |
| 
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     Vec2 ();                        // no initialization
 | |
|     explicit Vec2 (T a);            // (a a)
 | |
|     Vec2 (T a, T b);                // (a b)
 | |
| 
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Copy constructors and assignment
 | |
|     //---------------------------------
 | |
| 
 | |
|     Vec2 (const Vec2 &v);
 | |
|     template <class S> Vec2 (const Vec2<S> &v);
 | |
| 
 | |
|     const Vec2 &	operator = (const Vec2 &v);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Compatibility with Sb
 | |
|     //----------------------
 | |
| 
 | |
|     template <class S>
 | |
|     void		setValue (S a, S b);
 | |
| 
 | |
|     template <class S>
 | |
|     void		setValue (const Vec2<S> &v);
 | |
| 
 | |
|     template <class S>
 | |
|     void		getValue (S &a, S &b) const;
 | |
| 
 | |
|     template <class S>
 | |
|     void		getValue (Vec2<S> &v) const;
 | |
| 
 | |
|     T *			getValue ();
 | |
|     const T *		getValue () const;
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Equality
 | |
|     //---------
 | |
| 
 | |
|     template <class S>
 | |
|     bool		operator == (const Vec2<S> &v) const;
 | |
| 
 | |
|     template <class S>
 | |
|     bool		operator != (const Vec2<S> &v) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------
 | |
|     // Compare two vectors and test if they are "approximately equal":
 | |
|     //
 | |
|     // equalWithAbsError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    an absolute error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e
 | |
|     //
 | |
|     // equalWithRelError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    a relative error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e * abs (this[i])
 | |
|     //-----------------------------------------------------------------------
 | |
| 
 | |
|     bool		equalWithAbsError (const Vec2<T> &v, T e) const;
 | |
|     bool		equalWithRelError (const Vec2<T> &v, T e) const;
 | |
| 
 | |
|     //------------
 | |
|     // Dot product
 | |
|     //------------
 | |
| 
 | |
|     T			dot (const Vec2 &v) const;
 | |
|     T			operator ^ (const Vec2 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------
 | |
|     // Right-handed cross product, i.e. z component of
 | |
|     // Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0)
 | |
|     //------------------------------------------------
 | |
| 
 | |
|     T			cross (const Vec2 &v) const;
 | |
|     T			operator % (const Vec2 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise addition
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec2 &	operator += (const Vec2 &v);
 | |
|     Vec2		operator + (const Vec2 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Component-wise subtraction
 | |
|     //---------------------------
 | |
| 
 | |
|     const Vec2 &	operator -= (const Vec2 &v);
 | |
|     Vec2		operator - (const Vec2 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Component-wise multiplication by -1
 | |
|     //------------------------------------
 | |
| 
 | |
|     Vec2		operator - () const;
 | |
|     const Vec2 &	negate ();
 | |
| 
 | |
| 
 | |
|     //------------------------------
 | |
|     // Component-wise multiplication
 | |
|     //------------------------------
 | |
| 
 | |
|     const Vec2 &	operator *= (const Vec2 &v);
 | |
|     const Vec2 &	operator *= (T a);
 | |
|     Vec2		operator * (const Vec2 &v) const;
 | |
|     Vec2		operator * (T a) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise division
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec2 &	operator /= (const Vec2 &v);
 | |
|     const Vec2 &	operator /= (T a);
 | |
|     Vec2		operator / (const Vec2 &v) const;
 | |
|     Vec2		operator / (T a) const;
 | |
| 
 | |
| 
 | |
|     //----------------------------------------------------------------
 | |
|     // Length and normalization:  If v.length() is 0.0, v.normalize()
 | |
|     // and v.normalized() produce a null vector; v.normalizeExc() and
 | |
|     // v.normalizedExc() throw a NullVecExc.
 | |
|     // v.normalizeNonNull() and v.normalizedNonNull() are slightly
 | |
|     // faster than the other normalization routines, but if v.length()
 | |
|     // is 0.0, the result is undefined.
 | |
|     //----------------------------------------------------------------
 | |
| 
 | |
|     T			length () const;
 | |
|     T			length2 () const;
 | |
| 
 | |
|     const Vec2 &	normalize ();           // modifies *this
 | |
|     const Vec2 &	normalizeExc () throw (Iex::MathExc);
 | |
|     const Vec2 &	normalizeNonNull ();
 | |
| 
 | |
|     Vec2<T>		normalized () const;	// does not modify *this
 | |
|     Vec2<T>		normalizedExc () const throw (Iex::MathExc);
 | |
|     Vec2<T>		normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Number of dimensions, i.e. number of elements in a Vec2
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     static unsigned int	dimensions() {return 2;}
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------
 | |
|     // Limitations of type T (see also class limits<T>)
 | |
|     //-------------------------------------------------
 | |
| 
 | |
|     static T		baseTypeMin()		{return limits<T>::min();}
 | |
|     static T		baseTypeMax()		{return limits<T>::max();}
 | |
|     static T		baseTypeSmallest()	{return limits<T>::smallest();}
 | |
|     static T		baseTypeEpsilon()	{return limits<T>::epsilon();}
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------------
 | |
|     // Base type -- in templates, which accept a parameter, V, which
 | |
|     // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
 | |
|     // refer to T as V::BaseType
 | |
|     //--------------------------------------------------------------
 | |
| 
 | |
|     typedef T		BaseType;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     T			lengthTiny () const;
 | |
| };
 | |
| 
 | |
| 
 | |
| template <class T> class Vec3
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------------
 | |
|     // Access to elements
 | |
|     //-------------------
 | |
| 
 | |
|     T			x, y, z;
 | |
| 
 | |
|     T &			operator [] (int i);
 | |
|     const T &		operator [] (int i) const;
 | |
| 
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     Vec3 ();			   // no initialization
 | |
|     explicit Vec3 (T a);           // (a a a)
 | |
|     Vec3 (T a, T b, T c);	   // (a b c)
 | |
| 
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Copy constructors and assignment
 | |
|     //---------------------------------
 | |
| 
 | |
|     Vec3 (const Vec3 &v);
 | |
|     template <class S> Vec3 (const Vec3<S> &v);
 | |
| 
 | |
|     const Vec3 &	operator = (const Vec3 &v);
 | |
| 
 | |
| 
 | |
|     //---------------------------------------------------------
 | |
|     // Vec4 to Vec3 conversion, divides x, y and z by w:
 | |
|     //
 | |
|     // The one-argument conversion function divides by w even
 | |
|     // if w is zero.  The result depends on how the environment
 | |
|     // handles floating-point exceptions.
 | |
|     //
 | |
|     // The two-argument version thows an InfPointExc exception
 | |
|     // if w is zero or if division by w would overflow.
 | |
|     //---------------------------------------------------------
 | |
| 
 | |
|     template <class S> explicit Vec3 (const Vec4<S> &v);
 | |
|     template <class S> explicit Vec3 (const Vec4<S> &v, InfException);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Compatibility with Sb
 | |
|     //----------------------
 | |
| 
 | |
|     template <class S>
 | |
|     void		setValue (S a, S b, S c);
 | |
| 
 | |
|     template <class S>
 | |
|     void		setValue (const Vec3<S> &v);
 | |
| 
 | |
|     template <class S>
 | |
|     void		getValue (S &a, S &b, S &c) const;
 | |
| 
 | |
|     template <class S>
 | |
|     void		getValue (Vec3<S> &v) const;
 | |
| 
 | |
|     T *			getValue();
 | |
|     const T *		getValue() const;
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Equality
 | |
|     //---------
 | |
| 
 | |
|     template <class S>
 | |
|     bool		operator == (const Vec3<S> &v) const;
 | |
| 
 | |
|     template <class S>
 | |
|     bool		operator != (const Vec3<S> &v) const;
 | |
| 
 | |
|     //-----------------------------------------------------------------------
 | |
|     // Compare two vectors and test if they are "approximately equal":
 | |
|     //
 | |
|     // equalWithAbsError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    an absolute error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e
 | |
|     //
 | |
|     // equalWithRelError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    a relative error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e * abs (this[i])
 | |
|     //-----------------------------------------------------------------------
 | |
| 
 | |
|     bool		equalWithAbsError (const Vec3<T> &v, T e) const;
 | |
|     bool		equalWithRelError (const Vec3<T> &v, T e) const;
 | |
| 
 | |
|     //------------
 | |
|     // Dot product
 | |
|     //------------
 | |
| 
 | |
|     T			dot (const Vec3 &v) const;
 | |
|     T			operator ^ (const Vec3 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Right-handed cross product
 | |
|     //---------------------------
 | |
| 
 | |
|     Vec3		cross (const Vec3 &v) const;
 | |
|     const Vec3 &	operator %= (const Vec3 &v);
 | |
|     Vec3		operator % (const Vec3 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise addition
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec3 &	operator += (const Vec3 &v);
 | |
|     Vec3		operator + (const Vec3 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Component-wise subtraction
 | |
|     //---------------------------
 | |
| 
 | |
|     const Vec3 &	operator -= (const Vec3 &v);
 | |
|     Vec3		operator - (const Vec3 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Component-wise multiplication by -1
 | |
|     //------------------------------------
 | |
| 
 | |
|     Vec3		operator - () const;
 | |
|     const Vec3 &	negate ();
 | |
| 
 | |
| 
 | |
|     //------------------------------
 | |
|     // Component-wise multiplication
 | |
|     //------------------------------
 | |
| 
 | |
|     const Vec3 &	operator *= (const Vec3 &v);
 | |
|     const Vec3 &	operator *= (T a);
 | |
|     Vec3		operator * (const Vec3 &v) const;
 | |
|     Vec3		operator * (T a) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise division
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec3 &	operator /= (const Vec3 &v);
 | |
|     const Vec3 &	operator /= (T a);
 | |
|     Vec3		operator / (const Vec3 &v) const;
 | |
|     Vec3		operator / (T a) const;
 | |
| 
 | |
| 
 | |
|     //----------------------------------------------------------------
 | |
|     // Length and normalization:  If v.length() is 0.0, v.normalize()
 | |
|     // and v.normalized() produce a null vector; v.normalizeExc() and
 | |
|     // v.normalizedExc() throw a NullVecExc.
 | |
|     // v.normalizeNonNull() and v.normalizedNonNull() are slightly
 | |
|     // faster than the other normalization routines, but if v.length()
 | |
|     // is 0.0, the result is undefined.
 | |
|     //----------------------------------------------------------------
 | |
| 
 | |
|     T			length () const;
 | |
|     T			length2 () const;
 | |
| 
 | |
|     const Vec3 &	normalize ();           // modifies *this
 | |
|     const Vec3 &	normalizeExc () throw (Iex::MathExc);
 | |
|     const Vec3 &	normalizeNonNull ();
 | |
| 
 | |
|     Vec3<T>		normalized () const;	// does not modify *this
 | |
|     Vec3<T>		normalizedExc () const throw (Iex::MathExc);
 | |
|     Vec3<T>		normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Number of dimensions, i.e. number of elements in a Vec3
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     static unsigned int	dimensions() {return 3;}
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------
 | |
|     // Limitations of type T (see also class limits<T>)
 | |
|     //-------------------------------------------------
 | |
| 
 | |
|     static T		baseTypeMin()		{return limits<T>::min();}
 | |
|     static T		baseTypeMax()		{return limits<T>::max();}
 | |
|     static T		baseTypeSmallest()	{return limits<T>::smallest();}
 | |
|     static T		baseTypeEpsilon()	{return limits<T>::epsilon();}
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------------
 | |
|     // Base type -- in templates, which accept a parameter, V, which
 | |
|     // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
 | |
|     // refer to T as V::BaseType
 | |
|     //--------------------------------------------------------------
 | |
| 
 | |
|     typedef T		BaseType;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     T			lengthTiny () const;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| template <class T> class Vec4
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------------
 | |
|     // Access to elements
 | |
|     //-------------------
 | |
| 
 | |
|     T               x, y, z, w;
 | |
| 
 | |
|     T &             operator [] (int i);
 | |
|     const T &       operator [] (int i) const;
 | |
| 
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     Vec4 ();			   // no initialization
 | |
|     explicit Vec4 (T a);           // (a a a a)
 | |
|     Vec4 (T a, T b, T c, T d);	   // (a b c d)
 | |
| 
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Copy constructors and assignment
 | |
|     //---------------------------------
 | |
| 
 | |
|     Vec4 (const Vec4 &v);
 | |
|     template <class S> Vec4 (const Vec4<S> &v);
 | |
| 
 | |
|     const Vec4 &    operator = (const Vec4 &v);
 | |
| 
 | |
| 
 | |
|     //-------------------------------------
 | |
|     // Vec3 to Vec4 conversion, sets w to 1
 | |
|     //-------------------------------------
 | |
| 
 | |
|     template <class S> explicit Vec4 (const Vec3<S> &v);
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Equality
 | |
|     //---------
 | |
| 
 | |
|     template <class S>
 | |
|     bool            operator == (const Vec4<S> &v) const;
 | |
| 
 | |
|     template <class S>
 | |
|     bool            operator != (const Vec4<S> &v) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------
 | |
|     // Compare two vectors and test if they are "approximately equal":
 | |
|     //
 | |
|     // equalWithAbsError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    an absolute error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e
 | |
|     //
 | |
|     // equalWithRelError (v, e)
 | |
|     //
 | |
|     //	    Returns true if the coefficients of this and v are the same with
 | |
|     //	    a relative error of no more than e, i.e., for all i
 | |
|     //
 | |
|     //      abs (this[i] - v[i]) <= e * abs (this[i])
 | |
|     //-----------------------------------------------------------------------
 | |
| 
 | |
|     bool		equalWithAbsError (const Vec4<T> &v, T e) const;
 | |
|     bool		equalWithRelError (const Vec4<T> &v, T e) const;
 | |
| 
 | |
| 
 | |
|     //------------
 | |
|     // Dot product
 | |
|     //------------
 | |
| 
 | |
|     T			dot (const Vec4 &v) const;
 | |
|     T			operator ^ (const Vec4 &v) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------
 | |
|     // Cross product is not defined in 4D
 | |
|     //-----------------------------------
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise addition
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec4 &    operator += (const Vec4 &v);
 | |
|     Vec4            operator + (const Vec4 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Component-wise subtraction
 | |
|     //---------------------------
 | |
| 
 | |
|     const Vec4 &    operator -= (const Vec4 &v);
 | |
|     Vec4            operator - (const Vec4 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Component-wise multiplication by -1
 | |
|     //------------------------------------
 | |
| 
 | |
|     Vec4            operator - () const;
 | |
|     const Vec4 &    negate ();
 | |
| 
 | |
| 
 | |
|     //------------------------------
 | |
|     // Component-wise multiplication
 | |
|     //------------------------------
 | |
| 
 | |
|     const Vec4 &    operator *= (const Vec4 &v);
 | |
|     const Vec4 &    operator *= (T a);
 | |
|     Vec4            operator * (const Vec4 &v) const;
 | |
|     Vec4            operator * (T a) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise division
 | |
|     //------------------------
 | |
| 
 | |
|     const Vec4 &    operator /= (const Vec4 &v);
 | |
|     const Vec4 &    operator /= (T a);
 | |
|     Vec4            operator / (const Vec4 &v) const;
 | |
|     Vec4            operator / (T a) const;
 | |
| 
 | |
| 
 | |
|     //----------------------------------------------------------------
 | |
|     // Length and normalization:  If v.length() is 0.0, v.normalize()
 | |
|     // and v.normalized() produce a null vector; v.normalizeExc() and
 | |
|     // v.normalizedExc() throw a NullVecExc.
 | |
|     // v.normalizeNonNull() and v.normalizedNonNull() are slightly
 | |
|     // faster than the other normalization routines, but if v.length()
 | |
|     // is 0.0, the result is undefined.
 | |
|     //----------------------------------------------------------------
 | |
| 
 | |
|     T               length () const;
 | |
|     T               length2 () const;
 | |
| 
 | |
|     const Vec4 &    normalize ();           // modifies *this
 | |
|     const Vec4 &    normalizeExc () throw (Iex::MathExc);
 | |
|     const Vec4 &    normalizeNonNull ();
 | |
| 
 | |
|     Vec4<T>         normalized () const;	// does not modify *this
 | |
|     Vec4<T>         normalizedExc () const throw (Iex::MathExc);
 | |
|     Vec4<T>         normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Number of dimensions, i.e. number of elements in a Vec4
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     static unsigned int	dimensions() {return 4;}
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------
 | |
|     // Limitations of type T (see also class limits<T>)
 | |
|     //-------------------------------------------------
 | |
| 
 | |
|     static T		baseTypeMin()		{return limits<T>::min();}
 | |
|     static T		baseTypeMax()		{return limits<T>::max();}
 | |
|     static T		baseTypeSmallest()	{return limits<T>::smallest();}
 | |
|     static T		baseTypeEpsilon()	{return limits<T>::epsilon();}
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------------
 | |
|     // Base type -- in templates, which accept a parameter, V, which
 | |
|     // could be either a Vec2<T>, a Vec3<T>, or a Vec4<T> you can
 | |
|     // refer to T as V::BaseType
 | |
|     //--------------------------------------------------------------
 | |
| 
 | |
|     typedef T		BaseType;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     T			lengthTiny () const;
 | |
| };
 | |
| 
 | |
| 
 | |
| //--------------
 | |
| // Stream output
 | |
| //--------------
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &	operator << (std::ostream &s, const Vec2<T> &v);
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &	operator << (std::ostream &s, const Vec3<T> &v);
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &	operator << (std::ostream &s, const Vec4<T> &v);
 | |
| 
 | |
| //----------------------------------------------------
 | |
| // Reverse multiplication: S * Vec2<T> and S * Vec3<T>
 | |
| //----------------------------------------------------
 | |
| 
 | |
| template <class T> Vec2<T>	operator * (T a, const Vec2<T> &v);
 | |
| template <class T> Vec3<T>	operator * (T a, const Vec3<T> &v);
 | |
| template <class T> Vec4<T>	operator * (T a, const Vec4<T> &v);
 | |
| 
 | |
| 
 | |
| //-------------------------
 | |
| // Typedefs for convenience
 | |
| //-------------------------
 | |
| 
 | |
| typedef Vec2 <short>  V2s;
 | |
| typedef Vec2 <int>    V2i;
 | |
| typedef Vec2 <float>  V2f;
 | |
| typedef Vec2 <double> V2d;
 | |
| typedef Vec3 <short>  V3s;
 | |
| typedef Vec3 <int>    V3i;
 | |
| typedef Vec3 <float>  V3f;
 | |
| typedef Vec3 <double> V3d;
 | |
| typedef Vec4 <short>  V4s;
 | |
| typedef Vec4 <int>    V4i;
 | |
| typedef Vec4 <float>  V4f;
 | |
| typedef Vec4 <double> V4d;
 | |
| 
 | |
| 
 | |
| //-------------------------------------------
 | |
| // Specializations for VecN<short>, VecN<int>
 | |
| //-------------------------------------------
 | |
| 
 | |
| // Vec2<short>
 | |
| 
 | |
| template <> short
 | |
| Vec2<short>::length () const;
 | |
| 
 | |
| template <> const Vec2<short> &
 | |
| Vec2<short>::normalize ();
 | |
| 
 | |
| template <> const Vec2<short> &
 | |
| Vec2<short>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec2<short> &
 | |
| Vec2<short>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec2<short>
 | |
| Vec2<short>::normalized () const;
 | |
| 
 | |
| template <> Vec2<short>
 | |
| Vec2<short>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec2<short>
 | |
| Vec2<short>::normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
| // Vec2<int>
 | |
| 
 | |
| template <> int
 | |
| Vec2<int>::length () const;
 | |
| 
 | |
| template <> const Vec2<int> &
 | |
| Vec2<int>::normalize ();
 | |
| 
 | |
| template <> const Vec2<int> &
 | |
| Vec2<int>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec2<int> &
 | |
| Vec2<int>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec2<int>
 | |
| Vec2<int>::normalized () const;
 | |
| 
 | |
| template <> Vec2<int>
 | |
| Vec2<int>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec2<int>
 | |
| Vec2<int>::normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
| // Vec3<short>
 | |
| 
 | |
| template <> short
 | |
| Vec3<short>::length () const;
 | |
| 
 | |
| template <> const Vec3<short> &
 | |
| Vec3<short>::normalize ();
 | |
| 
 | |
| template <> const Vec3<short> &
 | |
| Vec3<short>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec3<short> &
 | |
| Vec3<short>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec3<short>
 | |
| Vec3<short>::normalized () const;
 | |
| 
 | |
| template <> Vec3<short>
 | |
| Vec3<short>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec3<short>
 | |
| Vec3<short>::normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
| // Vec3<int>
 | |
| 
 | |
| template <> int
 | |
| Vec3<int>::length () const;
 | |
| 
 | |
| template <> const Vec3<int> &
 | |
| Vec3<int>::normalize ();
 | |
| 
 | |
| template <> const Vec3<int> &
 | |
| Vec3<int>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec3<int> &
 | |
| Vec3<int>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec3<int>
 | |
| Vec3<int>::normalized () const;
 | |
| 
 | |
| template <> Vec3<int>
 | |
| Vec3<int>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec3<int>
 | |
| Vec3<int>::normalizedNonNull () const;
 | |
| 
 | |
| // Vec4<short>
 | |
| 
 | |
| template <> short
 | |
| Vec4<short>::length () const;
 | |
| 
 | |
| template <> const Vec4<short> &
 | |
| Vec4<short>::normalize ();
 | |
| 
 | |
| template <> const Vec4<short> &
 | |
| Vec4<short>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec4<short> &
 | |
| Vec4<short>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec4<short>
 | |
| Vec4<short>::normalized () const;
 | |
| 
 | |
| template <> Vec4<short>
 | |
| Vec4<short>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec4<short>
 | |
| Vec4<short>::normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
| // Vec4<int>
 | |
| 
 | |
| template <> int
 | |
| Vec4<int>::length () const;
 | |
| 
 | |
| template <> const Vec4<int> &
 | |
| Vec4<int>::normalize ();
 | |
| 
 | |
| template <> const Vec4<int> &
 | |
| Vec4<int>::normalizeExc () throw (Iex::MathExc);
 | |
| 
 | |
| template <> const Vec4<int> &
 | |
| Vec4<int>::normalizeNonNull ();
 | |
| 
 | |
| template <> Vec4<int>
 | |
| Vec4<int>::normalized () const;
 | |
| 
 | |
| template <> Vec4<int>
 | |
| Vec4<int>::normalizedExc () const throw (Iex::MathExc);
 | |
| 
 | |
| template <> Vec4<int>
 | |
| Vec4<int>::normalizedNonNull () const;
 | |
| 
 | |
| 
 | |
| //------------------------
 | |
| // Implementation of Vec2:
 | |
| //------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T &
 | |
| Vec2<T>::operator [] (int i)
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T &
 | |
| Vec2<T>::operator [] (int i) const
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec2<T>::Vec2 ()
 | |
| {
 | |
|     // empty
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec2<T>::Vec2 (T a)
 | |
| {
 | |
|     x = y = a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec2<T>::Vec2 (T a, T b)
 | |
| {
 | |
|     x = a;
 | |
|     y = b;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec2<T>::Vec2 (const Vec2 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Vec2<T>::Vec2 (const Vec2<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator = (const Vec2 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec2<T>::setValue (S a, S b)
 | |
| {
 | |
|     x = T (a);
 | |
|     y = T (b);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec2<T>::setValue (const Vec2<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec2<T>::getValue (S &a, S &b) const
 | |
| {
 | |
|     a = S (x);
 | |
|     b = S (y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec2<T>::getValue (Vec2<S> &v) const
 | |
| {
 | |
|     v.x = S (x);
 | |
|     v.y = S (y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Vec2<T>::getValue()
 | |
| {
 | |
|     return (T *) &x;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Vec2<T>::getValue() const
 | |
| {
 | |
|     return (const T *) &x;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec2<T>::operator == (const Vec2<S> &v) const
 | |
| {
 | |
|     return x == v.x && y == v.y;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec2<T>::operator != (const Vec2<S> &v) const
 | |
| {
 | |
|     return x != v.x || y != v.y;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec2<T>::equalWithAbsError (const Vec2<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 2; i++)
 | |
|     if (!Imath::equalWithAbsError ((*this)[i], v[i], e))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec2<T>::equalWithRelError (const Vec2<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 2; i++)
 | |
|     if (!Imath::equalWithRelError ((*this)[i], v[i], e))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::dot (const Vec2 &v) const
 | |
| {
 | |
|     return x * v.x + y * v.y;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::operator ^ (const Vec2 &v) const
 | |
| {
 | |
|     return dot (v);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::cross (const Vec2 &v) const
 | |
| {
 | |
|     return x * v.y - y * v.x;
 | |
| 
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::operator % (const Vec2 &v) const
 | |
| {
 | |
|     return x * v.y - y * v.x;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator += (const Vec2 &v)
 | |
| {
 | |
|     x += v.x;
 | |
|     y += v.y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator + (const Vec2 &v) const
 | |
| {
 | |
|     return Vec2 (x + v.x, y + v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator -= (const Vec2 &v)
 | |
| {
 | |
|     x -= v.x;
 | |
|     y -= v.y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator - (const Vec2 &v) const
 | |
| {
 | |
|     return Vec2 (x - v.x, y - v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator - () const
 | |
| {
 | |
|     return Vec2 (-x, -y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::negate ()
 | |
| {
 | |
|     x = -x;
 | |
|     y = -y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator *= (const Vec2 &v)
 | |
| {
 | |
|     x *= v.x;
 | |
|     y *= v.y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator *= (T a)
 | |
| {
 | |
|     x *= a;
 | |
|     y *= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator * (const Vec2 &v) const
 | |
| {
 | |
|     return Vec2 (x * v.x, y * v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator * (T a) const
 | |
| {
 | |
|     return Vec2 (x * a, y * a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator /= (const Vec2 &v)
 | |
| {
 | |
|     x /= v.x;
 | |
|     y /= v.y;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec2<T> &
 | |
| Vec2<T>::operator /= (T a)
 | |
| {
 | |
|     x /= a;
 | |
|     y /= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator / (const Vec2 &v) const
 | |
| {
 | |
|     return Vec2 (x / v.x, y / v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Vec2<T>::operator / (T a) const
 | |
| {
 | |
|     return Vec2 (x / a, y / a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T
 | |
| Vec2<T>::lengthTiny () const
 | |
| {
 | |
|     T absX = (x >= T (0))? x: -x;
 | |
|     T absY = (y >= T (0))? y: -y;
 | |
| 
 | |
|     T max = absX;
 | |
| 
 | |
|     if (max < absY)
 | |
|     max = absY;
 | |
| 
 | |
|     if (max == T (0))
 | |
|     return T (0);
 | |
| 
 | |
|     //
 | |
|     // Do not replace the divisions by max with multiplications by 1/max.
 | |
|     // Computing 1/max can overflow but the divisions below will always
 | |
|     // produce results less than or equal to 1.
 | |
|     //
 | |
| 
 | |
|     absX /= max;
 | |
|     absY /= max;
 | |
| 
 | |
|     return max * Math<T>::sqrt (absX * absX + absY * absY);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::length () const
 | |
| {
 | |
|     T length2 = dot (*this);
 | |
| 
 | |
|     if (length2 < T (2) * limits<T>::smallest())
 | |
|     return lengthTiny();
 | |
| 
 | |
|     return Math<T>::sqrt (length2);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec2<T>::length2 () const
 | |
| {
 | |
|     return dot (*this);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec2<T> &
 | |
| Vec2<T>::normalize ()
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l != T (0))
 | |
|     {
 | |
|         //
 | |
|         // Do not replace the divisions by l with multiplications by 1/l.
 | |
|         // Computing 1/l can overflow but the divisions below will always
 | |
|         // produce results less than or equal to 1.
 | |
|         //
 | |
| 
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec2<T> &
 | |
| Vec2<T>::normalizeExc () throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| const Vec2<T> &
 | |
| Vec2<T>::normalizeNonNull ()
 | |
| {
 | |
|     T l = length();
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec2<T>
 | |
| Vec2<T>::normalized () const
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     return Vec2 (T (0));
 | |
| 
 | |
|     return Vec2 (x / l, y / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec2<T>
 | |
| Vec2<T>::normalizedExc () const throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     return Vec2 (x / l, y / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec2<T>
 | |
| Vec2<T>::normalizedNonNull () const
 | |
| {
 | |
|     T l = length();
 | |
|     return Vec2 (x / l, y / l);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------
 | |
| // Implementation of Vec3
 | |
| //-----------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T &
 | |
| Vec3<T>::operator [] (int i)
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T &
 | |
| Vec3<T>::operator [] (int i) const
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec3<T>::Vec3 ()
 | |
| {
 | |
|     // empty
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec3<T>::Vec3 (T a)
 | |
| {
 | |
|     x = y = z = a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec3<T>::Vec3 (T a, T b, T c)
 | |
| {
 | |
|     x = a;
 | |
|     y = b;
 | |
|     z = c;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec3<T>::Vec3 (const Vec3 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
|     z = v.z;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Vec3<T>::Vec3 (const Vec3<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
|     z = T (v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator = (const Vec3 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
|     z = v.z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Vec3<T>::Vec3 (const Vec4<S> &v)
 | |
| {
 | |
|     x = T (v.x / v.w);
 | |
|     y = T (v.y / v.w);
 | |
|     z = T (v.z / v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| Vec3<T>::Vec3 (const Vec4<S> &v, InfException)
 | |
| {
 | |
|     T vx = T (v.x);
 | |
|     T vy = T (v.y);
 | |
|     T vz = T (v.z);
 | |
|     T vw = T (v.w);
 | |
| 
 | |
|     T absW = (vw >= T (0))? vw: -vw;
 | |
| 
 | |
|     if (absW < 1)
 | |
|     {
 | |
|         T m = baseTypeMax() * absW;
 | |
| 
 | |
|         if (vx <= -m || vx >= m || vy <= -m || vy >= m || vz <= -m || vz >= m)
 | |
|             throw InfPointExc ("Cannot normalize point at infinity.");
 | |
|     }
 | |
| 
 | |
|     x = vx / vw;
 | |
|     y = vy / vw;
 | |
|     z = vz / vw;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec3<T>::setValue (S a, S b, S c)
 | |
| {
 | |
|     x = T (a);
 | |
|     y = T (b);
 | |
|     z = T (c);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec3<T>::setValue (const Vec3<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
|     z = T (v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec3<T>::getValue (S &a, S &b, S &c) const
 | |
| {
 | |
|     a = S (x);
 | |
|     b = S (y);
 | |
|     c = S (z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Vec3<T>::getValue (Vec3<S> &v) const
 | |
| {
 | |
|     v.x = S (x);
 | |
|     v.y = S (y);
 | |
|     v.z = S (z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Vec3<T>::getValue()
 | |
| {
 | |
|     return (T *) &x;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Vec3<T>::getValue() const
 | |
| {
 | |
|     return (const T *) &x;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec3<T>::operator == (const Vec3<S> &v) const
 | |
| {
 | |
|     return x == v.x && y == v.y && z == v.z;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec3<T>::operator != (const Vec3<S> &v) const
 | |
| {
 | |
|     return x != v.x || y != v.y || z != v.z;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec3<T>::equalWithAbsError (const Vec3<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|     if (!Imath::equalWithAbsError ((*this)[i], v[i], e))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec3<T>::equalWithRelError (const Vec3<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|     if (!Imath::equalWithRelError ((*this)[i], v[i], e))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec3<T>::dot (const Vec3 &v) const
 | |
| {
 | |
|     return x * v.x + y * v.y + z * v.z;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec3<T>::operator ^ (const Vec3 &v) const
 | |
| {
 | |
|     return dot (v);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::cross (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (y * v.z - z * v.y,
 | |
|          z * v.x - x * v.z,
 | |
|          x * v.y - y * v.x);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator %= (const Vec3 &v)
 | |
| {
 | |
|     T a = y * v.z - z * v.y;
 | |
|     T b = z * v.x - x * v.z;
 | |
|     T c = x * v.y - y * v.x;
 | |
|     x = a;
 | |
|     y = b;
 | |
|     z = c;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator % (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (y * v.z - z * v.y,
 | |
|          z * v.x - x * v.z,
 | |
|          x * v.y - y * v.x);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator += (const Vec3 &v)
 | |
| {
 | |
|     x += v.x;
 | |
|     y += v.y;
 | |
|     z += v.z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator + (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (x + v.x, y + v.y, z + v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator -= (const Vec3 &v)
 | |
| {
 | |
|     x -= v.x;
 | |
|     y -= v.y;
 | |
|     z -= v.z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator - (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (x - v.x, y - v.y, z - v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator - () const
 | |
| {
 | |
|     return Vec3 (-x, -y, -z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::negate ()
 | |
| {
 | |
|     x = -x;
 | |
|     y = -y;
 | |
|     z = -z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator *= (const Vec3 &v)
 | |
| {
 | |
|     x *= v.x;
 | |
|     y *= v.y;
 | |
|     z *= v.z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator *= (T a)
 | |
| {
 | |
|     x *= a;
 | |
|     y *= a;
 | |
|     z *= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator * (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (x * v.x, y * v.y, z * v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator * (T a) const
 | |
| {
 | |
|     return Vec3 (x * a, y * a, z * a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator /= (const Vec3 &v)
 | |
| {
 | |
|     x /= v.x;
 | |
|     y /= v.y;
 | |
|     z /= v.z;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T> &
 | |
| Vec3<T>::operator /= (T a)
 | |
| {
 | |
|     x /= a;
 | |
|     y /= a;
 | |
|     z /= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator / (const Vec3 &v) const
 | |
| {
 | |
|     return Vec3 (x / v.x, y / v.y, z / v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| Vec3<T>::operator / (T a) const
 | |
| {
 | |
|     return Vec3 (x / a, y / a, z / a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T
 | |
| Vec3<T>::lengthTiny () const
 | |
| {
 | |
|     T absX = (x >= T (0))? x: -x;
 | |
|     T absY = (y >= T (0))? y: -y;
 | |
|     T absZ = (z >= T (0))? z: -z;
 | |
| 
 | |
|     T max = absX;
 | |
| 
 | |
|     if (max < absY)
 | |
|     max = absY;
 | |
| 
 | |
|     if (max < absZ)
 | |
|     max = absZ;
 | |
| 
 | |
|     if (max == T (0))
 | |
|     return T (0);
 | |
| 
 | |
|     //
 | |
|     // Do not replace the divisions by max with multiplications by 1/max.
 | |
|     // Computing 1/max can overflow but the divisions below will always
 | |
|     // produce results less than or equal to 1.
 | |
|     //
 | |
| 
 | |
|     absX /= max;
 | |
|     absY /= max;
 | |
|     absZ /= max;
 | |
| 
 | |
|     return max * Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec3<T>::length () const
 | |
| {
 | |
|     T length2 = dot (*this);
 | |
| 
 | |
|     if (length2 < T (2) * limits<T>::smallest())
 | |
|     return lengthTiny();
 | |
| 
 | |
|     return Math<T>::sqrt (length2);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec3<T>::length2 () const
 | |
| {
 | |
|     return dot (*this);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec3<T> &
 | |
| Vec3<T>::normalize ()
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l != T (0))
 | |
|     {
 | |
|         //
 | |
|         // Do not replace the divisions by l with multiplications by 1/l.
 | |
|         // Computing 1/l can overflow but the divisions below will always
 | |
|         // produce results less than or equal to 1.
 | |
|         //
 | |
| 
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     z /= l;
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec3<T> &
 | |
| Vec3<T>::normalizeExc () throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     z /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| const Vec3<T> &
 | |
| Vec3<T>::normalizeNonNull ()
 | |
| {
 | |
|     T l = length();
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     z /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec3<T>
 | |
| Vec3<T>::normalized () const
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     return Vec3 (T (0));
 | |
| 
 | |
|     return Vec3 (x / l, y / l, z / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec3<T>
 | |
| Vec3<T>::normalizedExc () const throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|     throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     return Vec3 (x / l, y / l, z / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec3<T>
 | |
| Vec3<T>::normalizedNonNull () const
 | |
| {
 | |
|     T l = length();
 | |
|     return Vec3 (x / l, y / l, z / l);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------
 | |
| // Implementation of Vec4
 | |
| //-----------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T &
 | |
| Vec4<T>::operator [] (int i)
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T &
 | |
| Vec4<T>::operator [] (int i) const
 | |
| {
 | |
|     return (&x)[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec4<T>::Vec4 ()
 | |
| {
 | |
|     // empty
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec4<T>::Vec4 (T a)
 | |
| {
 | |
|     x = y = z = w = a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec4<T>::Vec4 (T a, T b, T c, T d)
 | |
| {
 | |
|     x = a;
 | |
|     y = b;
 | |
|     z = c;
 | |
|     w = d;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec4<T>::Vec4 (const Vec4 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
|     z = v.z;
 | |
|     w = v.w;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Vec4<T>::Vec4 (const Vec4<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
|     z = T (v.z);
 | |
|     w = T (v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator = (const Vec4 &v)
 | |
| {
 | |
|     x = v.x;
 | |
|     y = v.y;
 | |
|     z = v.z;
 | |
|     w = v.w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Vec4<T>::Vec4 (const Vec3<S> &v)
 | |
| {
 | |
|     x = T (v.x);
 | |
|     y = T (v.y);
 | |
|     z = T (v.z);
 | |
|     w = T (1);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec4<T>::operator == (const Vec4<S> &v) const
 | |
| {
 | |
|     return x == v.x && y == v.y && z == v.z && w == v.w;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline bool
 | |
| Vec4<T>::operator != (const Vec4<S> &v) const
 | |
| {
 | |
|     return x != v.x || y != v.y || z != v.z || w != v.w;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec4<T>::equalWithAbsError (const Vec4<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         if (!Imath::equalWithAbsError ((*this)[i], v[i], e))
 | |
|             return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Vec4<T>::equalWithRelError (const Vec4<T> &v, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         if (!Imath::equalWithRelError ((*this)[i], v[i], e))
 | |
|             return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec4<T>::dot (const Vec4 &v) const
 | |
| {
 | |
|     return x * v.x + y * v.y + z * v.z + w * v.w;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec4<T>::operator ^ (const Vec4 &v) const
 | |
| {
 | |
|     return dot (v);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator += (const Vec4 &v)
 | |
| {
 | |
|     x += v.x;
 | |
|     y += v.y;
 | |
|     z += v.z;
 | |
|     w += v.w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator + (const Vec4 &v) const
 | |
| {
 | |
|     return Vec4 (x + v.x, y + v.y, z + v.z, w + v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator -= (const Vec4 &v)
 | |
| {
 | |
|     x -= v.x;
 | |
|     y -= v.y;
 | |
|     z -= v.z;
 | |
|     w -= v.w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator - (const Vec4 &v) const
 | |
| {
 | |
|     return Vec4 (x - v.x, y - v.y, z - v.z, w - v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator - () const
 | |
| {
 | |
|     return Vec4 (-x, -y, -z, -w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::negate ()
 | |
| {
 | |
|     x = -x;
 | |
|     y = -y;
 | |
|     z = -z;
 | |
|     w = -w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator *= (const Vec4 &v)
 | |
| {
 | |
|     x *= v.x;
 | |
|     y *= v.y;
 | |
|     z *= v.z;
 | |
|     w *= v.w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator *= (T a)
 | |
| {
 | |
|     x *= a;
 | |
|     y *= a;
 | |
|     z *= a;
 | |
|     w *= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator * (const Vec4 &v) const
 | |
| {
 | |
|     return Vec4 (x * v.x, y * v.y, z * v.z, w * v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator * (T a) const
 | |
| {
 | |
|     return Vec4 (x * a, y * a, z * a, w * a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator /= (const Vec4 &v)
 | |
| {
 | |
|     x /= v.x;
 | |
|     y /= v.y;
 | |
|     z /= v.z;
 | |
|     w /= v.w;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec4<T> &
 | |
| Vec4<T>::operator /= (T a)
 | |
| {
 | |
|     x /= a;
 | |
|     y /= a;
 | |
|     z /= a;
 | |
|     w /= a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator / (const Vec4 &v) const
 | |
| {
 | |
|     return Vec4 (x / v.x, y / v.y, z / v.z, w / v.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| Vec4<T>::operator / (T a) const
 | |
| {
 | |
|     return Vec4 (x / a, y / a, z / a, w / a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T
 | |
| Vec4<T>::lengthTiny () const
 | |
| {
 | |
|     T absX = (x >= T (0))? x: -x;
 | |
|     T absY = (y >= T (0))? y: -y;
 | |
|     T absZ = (z >= T (0))? z: -z;
 | |
|     T absW = (w >= T (0))? w: -w;
 | |
| 
 | |
|     T max = absX;
 | |
| 
 | |
|     if (max < absY)
 | |
|         max = absY;
 | |
| 
 | |
|     if (max < absZ)
 | |
|         max = absZ;
 | |
| 
 | |
|     if (max < absW)
 | |
|         max = absW;
 | |
| 
 | |
|     if (max == T (0))
 | |
|         return T (0);
 | |
| 
 | |
|     //
 | |
|     // Do not replace the divisions by max with multiplications by 1/max.
 | |
|     // Computing 1/max can overflow but the divisions below will always
 | |
|     // produce results less than or equal to 1.
 | |
|     //
 | |
| 
 | |
|     absX /= max;
 | |
|     absY /= max;
 | |
|     absZ /= max;
 | |
|     absW /= max;
 | |
| 
 | |
|     return max *
 | |
|         Math<T>::sqrt (absX * absX + absY * absY + absZ * absZ + absW * absW);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec4<T>::length () const
 | |
| {
 | |
|     T length2 = dot (*this);
 | |
| 
 | |
|     if (length2 < T (2) * limits<T>::smallest())
 | |
|         return lengthTiny();
 | |
| 
 | |
|     return Math<T>::sqrt (length2);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Vec4<T>::length2 () const
 | |
| {
 | |
|     return dot (*this);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec4<T> &
 | |
| Vec4<T>::normalize ()
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l != T (0))
 | |
|     {
 | |
|         //
 | |
|         // Do not replace the divisions by l with multiplications by 1/l.
 | |
|         // Computing 1/l can overflow but the divisions below will always
 | |
|         // produce results less than or equal to 1.
 | |
|         //
 | |
| 
 | |
|         x /= l;
 | |
|         y /= l;
 | |
|         z /= l;
 | |
|         w /= l;
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Vec4<T> &
 | |
| Vec4<T>::normalizeExc () throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|         throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     z /= l;
 | |
|     w /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| const Vec4<T> &
 | |
| Vec4<T>::normalizeNonNull ()
 | |
| {
 | |
|     T l = length();
 | |
|     x /= l;
 | |
|     y /= l;
 | |
|     z /= l;
 | |
|     w /= l;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec4<T>
 | |
| Vec4<T>::normalized () const
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|         return Vec4 (T (0));
 | |
| 
 | |
|     return Vec4 (x / l, y / l, z / l, w / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Vec4<T>
 | |
| Vec4<T>::normalizedExc () const throw (Iex::MathExc)
 | |
| {
 | |
|     T l = length();
 | |
| 
 | |
|     if (l == T (0))
 | |
|         throw NullVecExc ("Cannot normalize null vector.");
 | |
| 
 | |
|     return Vec4 (x / l, y / l, z / l, w / l);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Vec4<T>
 | |
| Vec4<T>::normalizedNonNull () const
 | |
| {
 | |
|     T l = length();
 | |
|     return Vec4 (x / l, y / l, z / l, w / l);
 | |
| }
 | |
| 
 | |
| //-----------------------------
 | |
| // Stream output implementation
 | |
| //-----------------------------
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &
 | |
| operator << (std::ostream &s, const Vec2<T> &v)
 | |
| {
 | |
|     return s << '(' << v.x << ' ' << v.y << ')';
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &
 | |
| operator << (std::ostream &s, const Vec3<T> &v)
 | |
| {
 | |
|     return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ')';
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &
 | |
| operator << (std::ostream &s, const Vec4<T> &v)
 | |
| {
 | |
|     return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ' ' << v.w << ')';
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------
 | |
| // Implementation of reverse multiplication
 | |
| //-----------------------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| operator * (T a, const Vec2<T> &v)
 | |
| {
 | |
|     return Vec2<T> (a * v.x, a * v.y);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T>
 | |
| operator * (T a, const Vec3<T> &v)
 | |
| {
 | |
|     return Vec3<T> (a * v.x, a * v.y, a * v.z);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec4<T>
 | |
| operator * (T a, const Vec4<T> &v)
 | |
| {
 | |
|     return Vec4<T> (a * v.x, a * v.y, a * v.z, a * v.w);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
