232 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Fangfang Bai, fangfang@multicorewareinc.com
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other oclMaterials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors as is and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "precomp.hpp"
 | |
| #include <iomanip>
 | |
| #ifdef HAVE_OPENCL
 | |
| using namespace cv;
 | |
| using namespace cv::ocl;
 | |
| using namespace cvtest;
 | |
| using namespace testing;
 | |
| using namespace std;
 | |
| 
 | |
| #ifndef MWC_TEST_UTILITY
 | |
| #define MWC_TEST_UTILITY
 | |
| //////// Utility
 | |
| #ifndef DIFFERENT_SIZES
 | |
| #else
 | |
| #undef DIFFERENT_SIZES
 | |
| #endif
 | |
| #define DIFFERENT_SIZES testing::Values(cv::Size(256, 256), cv::Size(3000, 3000))
 | |
| 
 | |
| // Param class
 | |
| #ifndef IMPLEMENT_PARAM_CLASS
 | |
| #define IMPLEMENT_PARAM_CLASS(name, type) \
 | |
| class name \
 | |
| { \
 | |
| public: \
 | |
|     name ( type arg = type ()) : val_(arg) {} \
 | |
|     operator type () const {return val_;} \
 | |
| private: \
 | |
|     type val_; \
 | |
| }; \
 | |
|     inline void PrintTo( name param, std::ostream* os) \
 | |
| { \
 | |
|     *os << #name <<  "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
 | |
| }
 | |
| 
 | |
| IMPLEMENT_PARAM_CLASS(Channels, int)
 | |
| #endif // IMPLEMENT_PARAM_CLASS
 | |
| #endif // MWC_TEST_UTILITY
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate
 | |
| #define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED))
 | |
| 
 | |
| IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
 | |
| 
 | |
| const char *TEMPLATE_METHOD_NAMES[6] = {"TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR", "TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED"};
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate, cv::Size, TemplateSize, Channels, TemplateMethod)
 | |
| {
 | |
|     cv::Size size;
 | |
|     cv::Size templ_size;
 | |
|     int cn;
 | |
|     int method;
 | |
|     //vector<cv::ocl::Info> oclinfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         size = GET_PARAM(0);
 | |
|         templ_size = GET_PARAM(1);
 | |
|         cn = GET_PARAM(2);
 | |
|         method = GET_PARAM(3);
 | |
|         //int devnums = getDevice(oclinfo);
 | |
|         //CV_Assert(devnums > 0);
 | |
|     }
 | |
| };
 | |
| struct MatchTemplate8U : MatchTemplate {};
 | |
| 
 | |
| TEST_P(MatchTemplate8U, Performance)
 | |
| {
 | |
|     std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
 | |
|     std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl;
 | |
|     std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl;
 | |
|     std::cout << "Channels: " << cn << std::endl;
 | |
| 
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
 | |
|     cv::Mat dst_gold;
 | |
|     cv::ocl::oclMat dst;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     double totalgputick = 0;
 | |
|     double totalgputick_kernel = 0;
 | |
| 
 | |
|     double t1 = 0;
 | |
|     double t2 = 0;
 | |
|     for(int j = 0; j < LOOP_TIMES + 1; j ++)
 | |
|     {
 | |
| 
 | |
|         t1 = (double)cvGetTickCount();//gpu start1
 | |
| 
 | |
|         cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload
 | |
|         cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload
 | |
| 
 | |
|         t2 = (double)cvGetTickCount(); //kernel
 | |
|         cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
 | |
|         t2 = (double)cvGetTickCount() - t2;//kernel
 | |
| 
 | |
|         cv::Mat cpu_dst;
 | |
|         dst.download (cpu_dst);//download
 | |
| 
 | |
|         t1 = (double)cvGetTickCount() - t1;//gpu end1
 | |
| 
 | |
|         if(j == 0)
 | |
|             continue;
 | |
| 
 | |
|         totalgputick = t1 + totalgputick;
 | |
|         totalgputick_kernel = t2 + totalgputick_kernel;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     cout << "average gpu runtime is  " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
 | |
|     cout << "average gpu runtime without data transfer is  " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| struct MatchTemplate32F : MatchTemplate {};
 | |
| TEST_P(MatchTemplate32F, Performance)
 | |
| {
 | |
|     std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
 | |
|     std::cout << "Image Size: (" << size.width << ", " << size.height << ")" << std::endl;
 | |
|     std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")" << std::endl;
 | |
|     std::cout << "Channels: " << cn << std::endl;
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::ocl::oclMat dst;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     double totalgputick = 0;
 | |
|     double totalgputick_kernel = 0;
 | |
| 
 | |
|     double t1 = 0;
 | |
|     double t2 = 0;
 | |
|     for(int j = 0; j < LOOP_TIMES; j ++)
 | |
|     {
 | |
| 
 | |
|         t1 = (double)cvGetTickCount();//gpu start1
 | |
| 
 | |
|         cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);//upload
 | |
|         cv::ocl::oclMat ocl_templ = cv::ocl::oclMat(templ);//upload
 | |
| 
 | |
|         t2 = (double)cvGetTickCount(); //kernel
 | |
|         cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
 | |
|         t2 = (double)cvGetTickCount() - t2;//kernel
 | |
| 
 | |
|         cv::Mat cpu_dst;
 | |
|         dst.download (cpu_dst);//download
 | |
| 
 | |
|         t1 = (double)cvGetTickCount() - t1;//gpu end1
 | |
| 
 | |
|         totalgputick = t1 + totalgputick;
 | |
| 
 | |
|         totalgputick_kernel = t2 + totalgputick_kernel;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     cout << "average gpu runtime is  " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
 | |
|     cout << "average gpu runtime without data transfer is  " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U,
 | |
|                         testing::Combine(
 | |
|                             testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)),
 | |
|                             testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
 | |
|                             testing::Values(Channels(1), Channels(4)/*, Channels(3)*/),
 | |
|                             ALL_TEMPLATE_METHODS
 | |
|                         )
 | |
|                        );
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
 | |
|                             testing::Values(cv::Size(1280, 1024), cv::Size(MWIDTH, MHEIGHT), cv::Size(1800, 1500)),
 | |
|                             testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
 | |
|                             testing::Values(Channels(1), Channels(4) /*, Channels(3)*/),
 | |
|                             testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
 | |
| 
 | |
| #endif //HAVE_OPENCL
 | 
