188 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Object Detection
 | |
| =============================
 | |
| 
 | |
| .. highlight:: cpp
 | |
| 
 | |
| ocl::oclCascadeClassifier
 | |
| -------------------------
 | |
| 
 | |
| Cascade classifier class used for object detection. Supports HAAR cascade classifier  in the form of cross link ::
 | |
| 
 | |
|     class CV_EXPORTS OclCascadeClassifier : public  cv::CascadeClassifier
 | |
|     {
 | |
|     public:
 | |
|           OclCascadeClassifier() {};
 | |
|           ~OclCascadeClassifier() {};
 | |
|            CvSeq *oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage,
 | |
|                                       double scaleFactor,int minNeighbors,
 | |
|                                       int flags, CvSize minSize = cvSize(0, 0),
 | |
|                                       CvSize maxSize = cvSize(0, 0));
 | |
|     };
 | |
| 
 | |
| ocl::oclCascadeClassifier::oclHaarDetectObjects
 | |
| ------------------------------------------------------
 | |
| Returns the detected objects by a list of rectangles
 | |
| 
 | |
| .. ocv:function:: CvSeq *OclCascadeClassifier::oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0))
 | |
| 
 | |
|     :param image:  Matrix of type CV_8U containing an image where objects should be detected.
 | |
| 
 | |
|     :param imageobjectsBuff: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the defaultsize. If not empty, the function searches not more than N  objects, where N = sizeof(objectsBufers data)/sizeof(cv::Rect).
 | |
| 
 | |
|     :param scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
 | |
| 
 | |
|     :param minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have to retain it.
 | |
| 
 | |
|     :param minSize: Minimum possible object size. Objects smaller than that are ignored.
 | |
| 
 | |
| Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects.
 | |
| 
 | |
| ocl::MatchTemplateBuf
 | |
| ---------------------
 | |
| .. ocv:class:: ocl::MatchTemplateBuf
 | |
| 
 | |
| Class providing memory buffers for :ocv:func:`ocl::matchTemplate` function, plus it allows to adjust some specific parameters. ::
 | |
| 
 | |
|     struct CV_EXPORTS MatchTemplateBuf
 | |
|     {
 | |
|         Size user_block_size;
 | |
|         oclMat imagef, templf;
 | |
|         std::vector<oclMat> images;
 | |
|         std::vector<oclMat> image_sums;
 | |
|         std::vector<oclMat> image_sqsums;
 | |
|     };
 | |
| 
 | |
| You can use field `user_block_size` to set specific block size for :ocv:func:`ocl::matchTemplate` function. If you leave its default value `Size(0,0)` then automatic estimation of block size will be used (which is optimized for speed). By varying `user_block_size` you can reduce memory requirements at the cost of speed.
 | |
| 
 | |
| ocl::matchTemplate
 | |
| ----------------------
 | |
| Computes a proximity map for a raster template and an image where the template is searched for.
 | |
| 
 | |
| .. ocv:function:: void ocl::matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method)
 | |
| 
 | |
| .. ocv:function:: void ocl::matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method, MatchTemplateBuf &buf)
 | |
| 
 | |
|     :param image: Source image.  ``CV_32F`` and  ``CV_8U`` depth images (1..4 channels) are supported for now.
 | |
| 
 | |
|     :param templ: Template image with the size and type the same as  ``image`` .
 | |
| 
 | |
|     :param result: Map containing comparison results ( ``CV_32FC1`` ). If  ``image`` is  *W x H*  and ``templ`` is  *w x h*, then  ``result`` must be *W-w+1 x H-h+1*.
 | |
| 
 | |
|     :param method: Specifies the way to compare the template with the image.
 | |
| 
 | |
|     :param buf: Optional buffer to avoid extra memory allocations and to adjust some specific parameters. See :ocv:class:`ocl::MatchTemplateBuf`.
 | |
| 
 | |
|     The following methods are supported for the ``CV_8U`` depth images for now:
 | |
| 
 | |
|     * ``CV_TM_SQDIFF``
 | |
|     * ``CV_TM_SQDIFF_NORMED``
 | |
|     * ``CV_TM_CCORR``
 | |
|     * ``CV_TM_CCORR_NORMED``
 | |
|     * ``CV_TM_CCOEFF``
 | |
|     * ``CV_TM_CCOEFF_NORMED``
 | |
| 
 | |
|     The following methods are supported for the ``CV_32F`` images for now:
 | |
| 
 | |
|     * ``CV_TM_SQDIFF``
 | |
|     * ``CV_TM_CCORR``
 | |
| 
 | |
| .. seealso:: :ocv:func:`matchTemplate`
 | |
| 
 | |
| 
 | |
| ocl::SURF_OCL
 | |
| -------------
 | |
| .. ocv:class:: ocl::SURF_OCL
 | |
| 
 | |
| Class used for extracting Speeded Up Robust Features (SURF) from an image. ::
 | |
| 
 | |
|     class SURF_OCL
 | |
|     {
 | |
|     public:
 | |
|         enum KeypointLayout
 | |
|         {
 | |
|             X_ROW = 0,
 | |
|             Y_ROW,
 | |
|             LAPLACIAN_ROW,
 | |
|             OCTAVE_ROW,
 | |
|             SIZE_ROW,
 | |
|             ANGLE_ROW,
 | |
|             HESSIAN_ROW,
 | |
|             ROWS_COUNT
 | |
|         };
 | |
| 
 | |
|         //! the default constructor
 | |
|         SURF_OCL();
 | |
|         //! the full constructor taking all the necessary parameters
 | |
|         explicit SURF_OCL(double _hessianThreshold, int _nOctaves=4,
 | |
|              int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
 | |
| 
 | |
|         //! returns the descriptor size in float's (64 or 128)
 | |
|         int descriptorSize() const;
 | |
| 
 | |
|         //! upload host keypoints to device memory
 | |
|         void uploadKeypoints(const vector<KeyPoint>& keypoints,
 | |
|             oclMat& keypointsocl);
 | |
|         //! download keypoints from device to host memory
 | |
|         void downloadKeypoints(const oclMat& keypointsocl,
 | |
|             vector<KeyPoint>& keypoints);
 | |
| 
 | |
|         //! download descriptors from device to host memory
 | |
|         void downloadDescriptors(const oclMat& descriptorsocl,
 | |
|             vector<float>& descriptors);
 | |
| 
 | |
|         void operator()(const oclMat& img, const oclMat& mask,
 | |
|             oclMat& keypoints);
 | |
| 
 | |
|         void operator()(const oclMat& img, const oclMat& mask,
 | |
|             oclMat& keypoints, oclMat& descriptors,
 | |
|             bool useProvidedKeypoints = false);
 | |
| 
 | |
|         void operator()(const oclMat& img, const oclMat& mask,
 | |
|             std::vector<KeyPoint>& keypoints);
 | |
| 
 | |
|         void operator()(const oclMat& img, const oclMat& mask,
 | |
|             std::vector<KeyPoint>& keypoints, oclMat& descriptors,
 | |
|             bool useProvidedKeypoints = false);
 | |
| 
 | |
|         void operator()(const oclMat& img, const oclMat& mask,
 | |
|             std::vector<KeyPoint>& keypoints,
 | |
|             std::vector<float>& descriptors,
 | |
|             bool useProvidedKeypoints = false);
 | |
| 
 | |
|         void releaseMemory();
 | |
| 
 | |
|         // SURF parameters
 | |
|         double hessianThreshold;
 | |
|         int nOctaves;
 | |
|         int nOctaveLayers;
 | |
|         bool extended;
 | |
|         bool upright;
 | |
| 
 | |
|         //! max keypoints = min(keypointsRatio * img.size().area(), 65535)
 | |
|         float keypointsRatio;
 | |
| 
 | |
|         oclMat sum, mask1, maskSum, intBuffer;
 | |
| 
 | |
|         oclMat det, trace;
 | |
| 
 | |
|         oclMat maxPosBuffer;
 | |
|     };
 | |
| 
 | |
| 
 | |
| The class ``SURF_OCL`` implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.
 | |
| 
 | |
| The class ``SURF_OCL`` can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( ``uploadKeypoints``, ``downloadKeypoints``, ``downloadDescriptors`` ). The format of CPU results is the same as ``SURF`` results. GPU results are stored in ``oclMat``. The ``keypoints`` matrix is :math:`\texttt{nFeatures} \times 7` matrix with the ``CV_32FC1`` type.
 | |
| 
 | |
| * ``keypoints.ptr<float>(X_ROW)[i]`` contains x coordinate of the i-th feature.
 | |
| * ``keypoints.ptr<float>(Y_ROW)[i]`` contains y coordinate of the i-th feature.
 | |
| * ``keypoints.ptr<float>(LAPLACIAN_ROW)[i]``  contains the laplacian sign of the i-th feature.
 | |
| * ``keypoints.ptr<float>(OCTAVE_ROW)[i]`` contains the octave of the i-th feature.
 | |
| * ``keypoints.ptr<float>(SIZE_ROW)[i]`` contains the size of the i-th feature.
 | |
| * ``keypoints.ptr<float>(ANGLE_ROW)[i]`` contain orientation of the i-th feature.
 | |
| * ``keypoints.ptr<float>(HESSIAN_ROW)[i]`` contains the response of the i-th feature.
 | |
| 
 | |
| The ``descriptors`` matrix is :math:`\texttt{nFeatures} \times \texttt{descriptorSize}` matrix with the ``CV_32FC1`` type.
 | |
| 
 | |
| The class ``SURF_OCL`` uses some buffers and provides access to it. All buffers can be safely released between function calls.
 | |
| 
 | |
| .. seealso:: :ocv:class:`SURF` | 
