290 lines
10 KiB
C++
290 lines
10 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_OBJDETECT_C_H__
|
|
#define __OPENCV_OBJDETECT_C_H__
|
|
|
|
#include "opencv2/core/core_c.h"
|
|
|
|
#ifdef __cplusplus
|
|
#include <deque>
|
|
#include <vector>
|
|
|
|
extern "C" {
|
|
#endif
|
|
|
|
/****************************************************************************************\
|
|
* Haar-like Object Detection functions *
|
|
\****************************************************************************************/
|
|
|
|
#define CV_HAAR_MAGIC_VAL 0x42500000
|
|
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
|
|
|
|
#define CV_IS_HAAR_CLASSIFIER( haar ) \
|
|
((haar) != NULL && \
|
|
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
|
|
|
|
#define CV_HAAR_FEATURE_MAX 3
|
|
|
|
typedef struct CvHaarFeature
|
|
{
|
|
int tilted;
|
|
struct
|
|
{
|
|
CvRect r;
|
|
float weight;
|
|
} rect[CV_HAAR_FEATURE_MAX];
|
|
} CvHaarFeature;
|
|
|
|
typedef struct CvHaarClassifier
|
|
{
|
|
int count;
|
|
CvHaarFeature* haar_feature;
|
|
float* threshold;
|
|
int* left;
|
|
int* right;
|
|
float* alpha;
|
|
} CvHaarClassifier;
|
|
|
|
typedef struct CvHaarStageClassifier
|
|
{
|
|
int count;
|
|
float threshold;
|
|
CvHaarClassifier* classifier;
|
|
|
|
int next;
|
|
int child;
|
|
int parent;
|
|
} CvHaarStageClassifier;
|
|
|
|
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
|
|
|
|
typedef struct CvHaarClassifierCascade
|
|
{
|
|
int flags;
|
|
int count;
|
|
CvSize orig_window_size;
|
|
CvSize real_window_size;
|
|
double scale;
|
|
CvHaarStageClassifier* stage_classifier;
|
|
CvHidHaarClassifierCascade* hid_cascade;
|
|
} CvHaarClassifierCascade;
|
|
|
|
typedef struct CvAvgComp
|
|
{
|
|
CvRect rect;
|
|
int neighbors;
|
|
} CvAvgComp;
|
|
|
|
/* Loads haar classifier cascade from a directory.
|
|
It is obsolete: convert your cascade to xml and use cvLoad instead */
|
|
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
|
|
const char* directory, CvSize orig_window_size);
|
|
|
|
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
|
|
|
|
#define CV_HAAR_DO_CANNY_PRUNING 1
|
|
#define CV_HAAR_SCALE_IMAGE 2
|
|
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
|
|
#define CV_HAAR_DO_ROUGH_SEARCH 8
|
|
|
|
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
|
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
double scale_factor CV_DEFAULT(1.1),
|
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
|
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
|
|
|
|
/* sets images for haar classifier cascade */
|
|
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
|
|
const CvArr* sum, const CvArr* sqsum,
|
|
const CvArr* tilted_sum, double scale );
|
|
|
|
/* runs the cascade on the specified window */
|
|
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
|
CvPoint pt, int start_stage CV_DEFAULT(0));
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Latent SVM Object Detection functions *
|
|
\****************************************************************************************/
|
|
|
|
// DataType: STRUCT position
|
|
// Structure describes the position of the filter in the feature pyramid
|
|
// l - level in the feature pyramid
|
|
// (x, y) - coordinate in level l
|
|
typedef struct CvLSVMFilterPosition
|
|
{
|
|
int x;
|
|
int y;
|
|
int l;
|
|
} CvLSVMFilterPosition;
|
|
|
|
// DataType: STRUCT filterObject
|
|
// Description of the filter, which corresponds to the part of the object
|
|
// V - ideal (penalty = 0) position of the partial filter
|
|
// from the root filter position (V_i in the paper)
|
|
// penaltyFunction - vector describes penalty function (d_i in the paper)
|
|
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
|
|
// FILTER DESCRIPTION
|
|
// Rectangular map (sizeX x sizeY),
|
|
// every cell stores feature vector (dimension = p)
|
|
// H - matrix of feature vectors
|
|
// to set and get feature vectors (i,j)
|
|
// used formula H[(j * sizeX + i) * p + k], where
|
|
// k - component of feature vector in cell (i, j)
|
|
// END OF FILTER DESCRIPTION
|
|
typedef struct CvLSVMFilterObject{
|
|
CvLSVMFilterPosition V;
|
|
float fineFunction[4];
|
|
int sizeX;
|
|
int sizeY;
|
|
int numFeatures;
|
|
float *H;
|
|
} CvLSVMFilterObject;
|
|
|
|
// data type: STRUCT CvLatentSvmDetector
|
|
// structure contains internal representation of trained Latent SVM detector
|
|
// num_filters - total number of filters (root plus part) in model
|
|
// num_components - number of components in model
|
|
// num_part_filters - array containing number of part filters for each component
|
|
// filters - root and part filters for all model components
|
|
// b - biases for all model components
|
|
// score_threshold - confidence level threshold
|
|
typedef struct CvLatentSvmDetector
|
|
{
|
|
int num_filters;
|
|
int num_components;
|
|
int* num_part_filters;
|
|
CvLSVMFilterObject** filters;
|
|
float* b;
|
|
float score_threshold;
|
|
} CvLatentSvmDetector;
|
|
|
|
// data type: STRUCT CvObjectDetection
|
|
// structure contains the bounding box and confidence level for detected object
|
|
// rect - bounding box for a detected object
|
|
// score - confidence level
|
|
typedef struct CvObjectDetection
|
|
{
|
|
CvRect rect;
|
|
float score;
|
|
} CvObjectDetection;
|
|
|
|
//////////////// Object Detection using Latent SVM //////////////
|
|
|
|
|
|
/*
|
|
// load trained detector from a file
|
|
//
|
|
// API
|
|
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
|
|
// INPUT
|
|
// filename - path to the file containing the parameters of
|
|
- trained Latent SVM detector
|
|
// OUTPUT
|
|
// trained Latent SVM detector in internal representation
|
|
*/
|
|
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
|
|
|
|
/*
|
|
// release memory allocated for CvLatentSvmDetector structure
|
|
//
|
|
// API
|
|
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
// INPUT
|
|
// detector - CvLatentSvmDetector structure to be released
|
|
// OUTPUT
|
|
*/
|
|
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
|
|
/*
|
|
// find rectangular regions in the given image that are likely
|
|
// to contain objects and corresponding confidence levels
|
|
//
|
|
// API
|
|
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
|
|
// CvLatentSvmDetector* detector,
|
|
// CvMemStorage* storage,
|
|
// float overlap_threshold = 0.5f,
|
|
// int numThreads = -1);
|
|
// INPUT
|
|
// image - image to detect objects in
|
|
// detector - Latent SVM detector in internal representation
|
|
// storage - memory storage to store the resultant sequence
|
|
// of the object candidate rectangles
|
|
// overlap_threshold - threshold for the non-maximum suppression algorithm
|
|
= 0.5f [here will be the reference to original paper]
|
|
// OUTPUT
|
|
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
|
|
*/
|
|
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
|
|
CvLatentSvmDetector* detector,
|
|
CvMemStorage* storage,
|
|
float overlap_threshold CV_DEFAULT(0.5f),
|
|
int numThreads CV_DEFAULT(-1));
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
|
|
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
|
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
|
|
double scale_factor = 1.1,
|
|
int min_neighbors = 3, int flags = 0,
|
|
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
|
|
bool outputRejectLevels = false );
|
|
|
|
struct CvDataMatrixCode
|
|
{
|
|
char msg[4];
|
|
CvMat* original;
|
|
CvMat* corners;
|
|
};
|
|
|
|
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
|
|
|
|
#endif
|
|
|
|
|
|
#endif /* __OPENCV_OBJDETECT_C_H__ */
|