1224 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1224 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // Integral
 | |
| 
 | |
| PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         useRoi = GET_PARAM(2);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(Integral, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::gpu::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
 | |
|     cv::gpu::integral(loadMat(src, useRoi), dst);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::integral(src, dst_gold, CV_32S);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Integral, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // HistEven
 | |
| 
 | |
| PARAM_TEST_CASE(HistEven, cv::gpu::DeviceInfo, cv::Size)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Size size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(HistEven, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     int hbins = 30;
 | |
|     float hranges[] = {50.0f, 200.0f};
 | |
| 
 | |
|     cv::gpu::GpuMat hist;
 | |
|     cv::gpu::histEven(loadMat(src), hist, hbins, (int) hranges[0], (int) hranges[1]);
 | |
| 
 | |
|     cv::Mat hist_gold;
 | |
| 
 | |
|     int histSize[] = {hbins};
 | |
|     const float* ranges[] = {hranges};
 | |
|     int channels[] = {0};
 | |
|     cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
 | |
| 
 | |
|     hist_gold = hist_gold.t();
 | |
|     hist_gold.convertTo(hist_gold, CV_32S);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // CalcHist
 | |
| 
 | |
| PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Size size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(CalcHist, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::gpu::GpuMat hist;
 | |
|     cv::gpu::calcHist(loadMat(src), hist);
 | |
| 
 | |
|     cv::Mat hist_gold;
 | |
| 
 | |
|     const int hbins = 256;
 | |
|     const float hranges[] = {0.0f, 256.0f};
 | |
|     const int histSize[] = {hbins};
 | |
|     const float* ranges[] = {hranges};
 | |
|     const int channels[] = {0};
 | |
| 
 | |
|     cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
 | |
|     hist_gold = hist_gold.reshape(1, 1);
 | |
|     hist_gold.convertTo(hist_gold, CV_32S);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CalcHist, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // EqualizeHist
 | |
| 
 | |
| PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(EqualizeHist, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::equalizeHist(loadMat(src), dst);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::equalizeHist(src, dst_gold);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 3.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // CLAHE
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(ClipLimit, double)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     double clipLimit;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         clipLimit = GET_PARAM(2);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(CLAHE, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit);
 | |
|     cv::gpu::GpuMat dst;
 | |
|     clahe->apply(loadMat(src), dst);
 | |
| 
 | |
|     cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
 | |
|     cv::Mat dst_gold;
 | |
|     clahe_gold->apply(src, dst_gold);
 | |
| 
 | |
|     ASSERT_MAT_NEAR(dst_gold, dst, 1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(0.0, 40.0)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////
 | |
| // ColumnSum
 | |
| 
 | |
| PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(ColumnSum, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_32FC1);
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::columnSum(loadMat(src), d_dst);
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     for (int j = 0; j < src.cols; ++j)
 | |
|     {
 | |
|         float gold = src.at<float>(0, j);
 | |
|         float res = dst.at<float>(0, j);
 | |
|         ASSERT_NEAR(res, gold, 1e-5);
 | |
|     }
 | |
| 
 | |
|     for (int i = 1; i < src.rows; ++i)
 | |
|     {
 | |
|         for (int j = 0; j < src.cols; ++j)
 | |
|         {
 | |
|             float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
 | |
|             float res = dst.at<float>(i, j);
 | |
|             ASSERT_NEAR(res, gold, 1e-5);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES));
 | |
| 
 | |
| ////////////////////////////////////////////////////////
 | |
| // Canny
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(AppertureSize, int);
 | |
|     IMPLEMENT_PARAM_CLASS(L2gradient, bool);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int apperture_size;
 | |
|     bool useL2gradient;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         apperture_size = GET_PARAM(1);
 | |
|         useL2gradient = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(Canny, Accuracy)
 | |
| {
 | |
|     cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     double low_thresh = 50.0;
 | |
|     double high_thresh = 100.0;
 | |
| 
 | |
|     if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|         cv::gpu::GpuMat edges;
 | |
|         cv::gpu::Canny(loadMat(img), edges, low_thresh, high_thresh, apperture_size, useL2gradient);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(CV_StsNotImplemented, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::gpu::GpuMat edges;
 | |
|         cv::gpu::Canny(loadMat(img, useRoi), edges, low_thresh, high_thresh, apperture_size, useL2gradient);
 | |
| 
 | |
|         cv::Mat edges_gold;
 | |
|         cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient);
 | |
| 
 | |
|         EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef OPENCV_TINY_GPU_MODULE
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Canny, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(AppertureSize(3)),
 | |
|     testing::Values(L2gradient(false), L2gradient(true)),
 | |
|     WHOLE_SUBMAT));
 | |
| #else
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Canny, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(AppertureSize(3), AppertureSize(5)),
 | |
|     testing::Values(L2gradient(false), L2gradient(true)),
 | |
|     WHOLE_SUBMAT));
 | |
| #endif
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MeanShift
 | |
| 
 | |
| struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Mat img;
 | |
| 
 | |
|     int spatialRad;
 | |
|     int colorRad;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         img = readImageType("meanshift/cones.png", CV_8UC4);
 | |
|         ASSERT_FALSE(img.empty());
 | |
| 
 | |
|         spatialRad = 30;
 | |
|         colorRad = 30;
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MeanShift, Filtering)
 | |
| {
 | |
|     cv::Mat img_template;
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         img_template = readImage("meanshift/con_result.png");
 | |
|     else
 | |
|         img_template = readImage("meanshift/con_result_CC1X.png");
 | |
|     ASSERT_FALSE(img_template.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad);
 | |
| 
 | |
|     ASSERT_EQ(CV_8UC4, d_dst.type());
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     cv::Mat result;
 | |
|     cv::cvtColor(dst, result, CV_BGRA2BGR);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(img_template, result, 0.0);
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(MeanShift, Proc)
 | |
| {
 | |
|     cv::FileStorage fs;
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ);
 | |
|     else
 | |
|         fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ);
 | |
|     ASSERT_TRUE(fs.isOpened());
 | |
| 
 | |
|     cv::Mat spmap_template;
 | |
|     fs["spmap"] >> spmap_template;
 | |
|     ASSERT_FALSE(spmap_template.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat rmap_filtered;
 | |
|     cv::gpu::meanShiftFiltering(loadMat(img), rmap_filtered, spatialRad, colorRad);
 | |
| 
 | |
|     cv::gpu::GpuMat rmap;
 | |
|     cv::gpu::GpuMat spmap;
 | |
|     cv::gpu::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad);
 | |
| 
 | |
|     ASSERT_EQ(CV_8UC4, rmap.type());
 | |
| 
 | |
|     EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
 | |
|     EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES);
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MeanShiftSegmentation
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(MinSize, int);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int minsize;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         minsize = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MeanShiftSegmentation, Regression)
 | |
| {
 | |
|     cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     std::ostringstream path;
 | |
|     path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize;
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         path << ".png";
 | |
|     else
 | |
|         path << "_CC1X.png";
 | |
|     cv::Mat dst_gold = readImage(path.str());
 | |
|     ASSERT_FALSE(dst_gold.empty());
 | |
| 
 | |
|     cv::Mat dst;
 | |
|     cv::gpu::meanShiftSegmentation(loadMat(img), dst, 10, 10, minsize);
 | |
| 
 | |
|     cv::Mat dst_rgb;
 | |
|     cv::cvtColor(dst, dst_rgb, CV_BGRA2BGR);
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MinSize(0), MinSize(4), MinSize(20), MinSize(84), MinSize(340), MinSize(1364))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // Blend
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     template <typename T>
 | |
|     void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
 | |
|     {
 | |
|         result_gold.create(img1.size(), img1.type());
 | |
| 
 | |
|         int cn = img1.channels();
 | |
| 
 | |
|         for (int y = 0; y < img1.rows; ++y)
 | |
|         {
 | |
|             const float* weights1_row = weights1.ptr<float>(y);
 | |
|             const float* weights2_row = weights2.ptr<float>(y);
 | |
|             const T* img1_row = img1.ptr<T>(y);
 | |
|             const T* img2_row = img2.ptr<T>(y);
 | |
|             T* result_gold_row = result_gold.ptr<T>(y);
 | |
| 
 | |
|             for (int x = 0; x < img1.cols * cn; ++x)
 | |
|             {
 | |
|                 float w1 = weights1_row[x / cn];
 | |
|                 float w2 = weights2_row[x / cn];
 | |
|                 result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int type;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(Blend, Accuracy)
 | |
| {
 | |
|     int depth = CV_MAT_DEPTH(type);
 | |
| 
 | |
|     cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
 | |
|     cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
 | |
|     cv::Mat weights1 = randomMat(size, CV_32F, 0, 1);
 | |
|     cv::Mat weights2 = randomMat(size, CV_32F, 0, 1);
 | |
| 
 | |
|     cv::gpu::GpuMat result;
 | |
|     cv::gpu::blendLinear(loadMat(img1, useRoi), loadMat(img2, useRoi), loadMat(weights1, useRoi), loadMat(weights2, useRoi), result);
 | |
| 
 | |
|     cv::Mat result_gold;
 | |
|     if (depth == CV_8U)
 | |
|         blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
 | |
|     else
 | |
|         blendLinearGold<float>(img1, img2, weights1, weights2, result_gold);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.0 : 1e-5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| #ifdef HAVE_CUFFT
 | |
| 
 | |
| ////////////////////////////////////////////////////////
 | |
| // Convolve
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
 | |
|     {
 | |
|         // reallocate the output array if needed
 | |
|         C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
 | |
|         cv::Size dftSize;
 | |
| 
 | |
|         // compute the size of DFT transform
 | |
|         dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
 | |
|         dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
 | |
| 
 | |
|         // allocate temporary buffers and initialize them with 0s
 | |
|         cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
 | |
|         cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
 | |
| 
 | |
|         // copy A and B to the top-left corners of tempA and tempB, respectively
 | |
|         cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
 | |
|         A.copyTo(roiA);
 | |
|         cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
 | |
|         B.copyTo(roiB);
 | |
| 
 | |
|         // now transform the padded A & B in-place;
 | |
|         // use "nonzeroRows" hint for faster processing
 | |
|         cv::dft(tempA, tempA, 0, A.rows);
 | |
|         cv::dft(tempB, tempB, 0, B.rows);
 | |
| 
 | |
|         // multiply the spectrums;
 | |
|         // the function handles packed spectrum representations well
 | |
|         cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
 | |
| 
 | |
|         // transform the product back from the frequency domain.
 | |
|         // Even though all the result rows will be non-zero,
 | |
|         // you need only the first C.rows of them, and thus you
 | |
|         // pass nonzeroRows == C.rows
 | |
|         cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
 | |
| 
 | |
|         // now copy the result back to C.
 | |
|         tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
 | |
|     }
 | |
| 
 | |
|     IMPLEMENT_PARAM_CLASS(KSize, int);
 | |
|     IMPLEMENT_PARAM_CLASS(Ccorr, bool);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int ksize;
 | |
|     bool ccorr;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         ksize = GET_PARAM(2);
 | |
|         ccorr = GET_PARAM(3);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(Convolve, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
 | |
|     cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::convolve(loadMat(src), loadMat(kernel), dst, ccorr);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     convolveDFT(src, kernel, dst_gold, ccorr);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)),
 | |
|     testing::Values(Ccorr(false), Ccorr(true))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate8U
 | |
| 
 | |
| CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     cv::Size templ_size;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         templ_size = GET_PARAM(2);
 | |
|         cn = GET_PARAM(3);
 | |
|         method = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate8U, DISABLED_Accuracy)
 | |
| {
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::matchTemplate(image, templ, dst_gold, method);
 | |
| 
 | |
|     cv::Mat h_dst(dst);
 | |
|     ASSERT_EQ(dst_gold.size(), h_dst.size());
 | |
|     ASSERT_EQ(dst_gold.type(), h_dst.type());
 | |
|     for (int y = 0; y < h_dst.rows; ++y)
 | |
|     {
 | |
|         for (int x = 0; x < h_dst.cols; ++x)
 | |
|         {
 | |
|             float gold_val = dst_gold.at<float>(y, x);
 | |
|             float actual_val = dst_gold.at<float>(y, x);
 | |
|             ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
 | |
|     testing::Values(Channels(1), Channels(3), Channels(4)),
 | |
|     TemplateMethod::all()));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate32F
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     cv::Size templ_size;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     int n, m, h, w;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         templ_size = GET_PARAM(2);
 | |
|         cn = GET_PARAM(3);
 | |
|         method = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate32F, DISABLED_Regression)
 | |
| {
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::matchTemplate(image, templ, dst_gold, method);
 | |
| 
 | |
|     cv::Mat h_dst(dst);
 | |
|     ASSERT_EQ(dst_gold.size(), h_dst.size());
 | |
|     ASSERT_EQ(dst_gold.type(), h_dst.type());
 | |
|     for (int y = 0; y < h_dst.rows; ++y)
 | |
|     {
 | |
|         for (int x = 0; x < h_dst.cols; ++x)
 | |
|         {
 | |
|             float gold_val = dst_gold.at<float>(y, x);
 | |
|             float actual_val = dst_gold.at<float>(y, x);
 | |
|             ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
 | |
|     testing::Values(Channels(1), Channels(3), Channels(4)),
 | |
|     testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplateBlackSource
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int method;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         method = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplateBlackSource, DISABLED_Accuracy)
 | |
| {
 | |
|     cv::Mat image = readImage("matchtemplate/black.png");
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     cv::Mat pattern = readImage("matchtemplate/cat.png");
 | |
|     ASSERT_FALSE(pattern.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method);
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     double maxValue;
 | |
|     cv::Point maxLoc;
 | |
|     cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
 | |
| 
 | |
|     cv::Point maxLocGold = cv::Point(284, 12);
 | |
| 
 | |
|     ASSERT_EQ(maxLocGold, maxLoc);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplateBlackSource, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate_CCOEF_NORMED
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::string, std::string>)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     std::string imageName;
 | |
|     std::string patternName;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         imageName = GET_PARAM(1).first;
 | |
|         patternName = GET_PARAM(1).second;
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CCOEF_NORMED, DISABLED_Accuracy)
 | |
| {
 | |
|     cv::Mat image = readImage(imageName);
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     cv::Mat pattern = readImage(patternName);
 | |
|     ASSERT_FALSE(pattern.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, CV_TM_CCOEFF_NORMED);
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     cv::Point minLoc, maxLoc;
 | |
|     double minVal, maxVal;
 | |
|     cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc);
 | |
| 
 | |
|     cv::Mat dstGold;
 | |
|     cv::matchTemplate(image, pattern, dstGold, CV_TM_CCOEFF_NORMED);
 | |
| 
 | |
|     double minValGold, maxValGold;
 | |
|     cv::Point minLocGold, maxLocGold;
 | |
|     cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold);
 | |
| 
 | |
|     ASSERT_EQ(minLocGold, minLoc);
 | |
|     ASSERT_EQ(maxLocGold, maxLoc);
 | |
|     ASSERT_LE(maxVal, 1.0);
 | |
|     ASSERT_GE(minVal, -1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png")))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate_CanFindBigTemplate
 | |
| 
 | |
| struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CanFindBigTemplate, DISABLED_SQDIFF_NORMED)
 | |
| {
 | |
|     cv::Mat scene = readImage("matchtemplate/scene.png");
 | |
|     ASSERT_FALSE(scene.empty());
 | |
| 
 | |
|     cv::Mat templ = readImage("matchtemplate/template.png");
 | |
|     ASSERT_FALSE(templ.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_result;
 | |
|     cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, CV_TM_SQDIFF_NORMED);
 | |
| 
 | |
|     cv::Mat result(d_result);
 | |
| 
 | |
|     double minVal;
 | |
|     cv::Point minLoc;
 | |
|     cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
 | |
| 
 | |
|     ASSERT_GE(minVal, 0);
 | |
|     ASSERT_LT(minVal, 1e-3);
 | |
|     ASSERT_EQ(344, minLoc.x);
 | |
|     ASSERT_EQ(0, minLoc.y);
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CanFindBigTemplate, DISABLED_SQDIFF)
 | |
| {
 | |
|     cv::Mat scene = readImage("matchtemplate/scene.png");
 | |
|     ASSERT_FALSE(scene.empty());
 | |
| 
 | |
|     cv::Mat templ = readImage("matchtemplate/template.png");
 | |
|     ASSERT_FALSE(templ.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_result;
 | |
|     cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, CV_TM_SQDIFF);
 | |
| 
 | |
|     cv::Mat result(d_result);
 | |
| 
 | |
|     double minVal;
 | |
|     cv::Point minLoc;
 | |
|     cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
 | |
| 
 | |
|     ASSERT_GE(minVal, 0);
 | |
|     ASSERT_EQ(344, minLoc.x);
 | |
|     ASSERT_EQ(0, minLoc.y);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES);
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // MulSpectrums
 | |
| 
 | |
| CV_FLAGS(DftFlags, 0, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
 | |
| 
 | |
| PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int flag;
 | |
| 
 | |
|     cv::Mat a, b;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         flag = GET_PARAM(2);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         a = randomMat(size, CV_32FC2);
 | |
|         b = randomMat(size, CV_32FC2);
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MulSpectrums, Simple)
 | |
| {
 | |
|     cv::gpu::GpuMat c;
 | |
|     cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
 | |
| 
 | |
|     cv::Mat c_gold;
 | |
|     cv::mulSpectrums(a, b, c_gold, flag, false);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(c_gold, c, 1e-2);
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(MulSpectrums, Scaled)
 | |
| {
 | |
|     float scale = 1.f / size.area();
 | |
| 
 | |
|     cv::gpu::GpuMat c;
 | |
|     cv::gpu::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false);
 | |
| 
 | |
|     cv::Mat c_gold;
 | |
|     cv::mulSpectrums(a, b, c_gold, flag, false);
 | |
|     c_gold.convertTo(c_gold, c_gold.type(), scale);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(c_gold, c, 1e-2);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MulSpectrums, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // Dft
 | |
| 
 | |
| struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
 | |
|     {
 | |
|         SCOPED_TRACE(hint);
 | |
| 
 | |
|         cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
 | |
| 
 | |
|         cv::Mat b_gold;
 | |
|         cv::dft(a, b_gold, flags);
 | |
| 
 | |
|         cv::gpu::GpuMat d_b;
 | |
|         cv::gpu::GpuMat d_b_data;
 | |
|         if (inplace)
 | |
|         {
 | |
|             d_b_data.create(1, a.size().area(), CV_32FC2);
 | |
|             d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
 | |
|         }
 | |
|         cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
 | |
| 
 | |
|         EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
 | |
|         ASSERT_EQ(CV_32F, d_b.depth());
 | |
|         ASSERT_EQ(2, d_b.channels());
 | |
|         EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(Dft, C2C)
 | |
| {
 | |
|     int cols = randomInt(2, 100);
 | |
|     int rows = randomInt(2, 100);
 | |
| 
 | |
|     for (int i = 0; i < 2; ++i)
 | |
|     {
 | |
|         bool inplace = i != 0;
 | |
| 
 | |
|         testC2C("no flags", cols, rows, 0, inplace);
 | |
|         testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
 | |
|         testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
 | |
|         testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
 | |
|         testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
 | |
|         testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
 | |
|         testC2C("single col", 1, rows, 0, inplace);
 | |
|         testC2C("single row", cols, 1, 0, inplace);
 | |
|         testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
 | |
|         testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
 | |
|         testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
 | |
|         testC2C("size 1 2", 1, 2, 0, inplace);
 | |
|         testC2C("size 2 1", 2, 1, 0, inplace);
 | |
|     }
 | |
| }
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
 | |
|     {
 | |
|         SCOPED_TRACE(hint);
 | |
| 
 | |
|         cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
 | |
| 
 | |
|         cv::gpu::GpuMat d_b, d_c;
 | |
|         cv::gpu::GpuMat d_b_data, d_c_data;
 | |
|         if (inplace)
 | |
|         {
 | |
|             if (a.cols == 1)
 | |
|             {
 | |
|                 d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
 | |
|                 d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
 | |
|                 d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
 | |
|             }
 | |
|             d_c_data.create(1, a.size().area(), CV_32F);
 | |
|             d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
 | |
|         }
 | |
| 
 | |
|         cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
 | |
|         cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
 | |
| 
 | |
|         EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
 | |
|         EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
 | |
|         ASSERT_EQ(CV_32F, d_c.depth());
 | |
|         ASSERT_EQ(1, d_c.channels());
 | |
| 
 | |
|         cv::Mat c(d_c);
 | |
|         EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
 | |
|     }
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(Dft, R2CThenC2R)
 | |
| {
 | |
|     int cols = randomInt(2, 100);
 | |
|     int rows = randomInt(2, 100);
 | |
| 
 | |
|     testR2CThenC2R("sanity", cols, rows, false);
 | |
|     testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
 | |
|     testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
 | |
|     testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
 | |
|     testR2CThenC2R("single col", 1, rows, false);
 | |
|     testR2CThenC2R("single col 1", 1, rows + 1, false);
 | |
|     testR2CThenC2R("single row", cols, 1, false);
 | |
|     testR2CThenC2R("single row 1", cols + 1, 1, false);
 | |
| 
 | |
|     testR2CThenC2R("sanity", cols, rows, true);
 | |
|     testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
 | |
|     testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
 | |
|     testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
 | |
|     testR2CThenC2R("single row", cols, 1, true);
 | |
|     testR2CThenC2R("single row 1", cols + 1, 1, true);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // CornerHarris
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(BlockSize, int);
 | |
|     IMPLEMENT_PARAM_CLASS(ApertureSize, int);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int borderType;
 | |
|     int blockSize;
 | |
|     int apertureSize;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         type = GET_PARAM(1);
 | |
|         borderType = GET_PARAM(2);
 | |
|         blockSize = GET_PARAM(3);
 | |
|         apertureSize = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(CornerHarris, Accuracy)
 | |
| {
 | |
|     cv::Mat src = readImageType("stereobm/aloe-L.png", type);
 | |
|     ASSERT_FALSE(src.empty());
 | |
| 
 | |
|     double k = randomDouble(0.1, 0.9);
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::cornerHarris(loadMat(src), dst, blockSize, apertureSize, k, borderType);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.02);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerHarris, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)),
 | |
|     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)),
 | |
|     testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
 | |
|     testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // cornerMinEigen
 | |
| 
 | |
| PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int borderType;
 | |
|     int blockSize;
 | |
|     int apertureSize;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         type = GET_PARAM(1);
 | |
|         borderType = GET_PARAM(2);
 | |
|         blockSize = GET_PARAM(3);
 | |
|         apertureSize = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(CornerMinEigen, Accuracy)
 | |
| {
 | |
|     cv::Mat src = readImageType("stereobm/aloe-L.png", type);
 | |
|     ASSERT_FALSE(src.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::cornerMinEigenVal(loadMat(src), dst, blockSize, apertureSize, borderType);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.02);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)),
 | |
|     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)),
 | |
|     testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
 | |
|     testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
