493 lines
18 KiB
ReStructuredText
493 lines
18 KiB
ReStructuredText
Common Interfaces of Feature Detectors
|
|
======================================
|
|
|
|
.. highlight:: cpp
|
|
|
|
Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
|
|
between different algorithms solving the same problem. All objects that implement keypoint detectors
|
|
inherit the
|
|
:ocv:class:`FeatureDetector` interface.
|
|
|
|
|
|
FeatureDetector
|
|
---------------
|
|
.. ocv:class:: FeatureDetector : public Algorithm
|
|
|
|
Abstract base class for 2D image feature detectors. ::
|
|
|
|
class CV_EXPORTS FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~FeatureDetector();
|
|
|
|
void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
void detect( const vector<Mat>& images,
|
|
vector<vector<KeyPoint> >& keypoints,
|
|
const vector<Mat>& masks=vector<Mat>() ) const;
|
|
|
|
virtual void read(const FileNode&);
|
|
virtual void write(FileStorage&) const;
|
|
|
|
static Ptr<FeatureDetector> create( const String& detectorType );
|
|
|
|
protected:
|
|
...
|
|
};
|
|
|
|
FeatureDetector::detect
|
|
---------------------------
|
|
Detects keypoints in an image (first variant) or image set (second variant).
|
|
|
|
.. ocv:function:: void FeatureDetector::detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
|
|
|
|
.. ocv:function:: void FeatureDetector::detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const
|
|
|
|
:param image: Image.
|
|
|
|
:param images: Image set.
|
|
|
|
:param keypoints: The detected keypoints. In the second variant of the method ``keypoints[i]`` is a set of keypoints detected in ``images[i]`` .
|
|
|
|
:param mask: Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.
|
|
|
|
:param masks: Masks for each input image specifying where to look for keypoints (optional). ``masks[i]`` is a mask for ``images[i]``.
|
|
|
|
FeatureDetector::create
|
|
-----------------------
|
|
Creates a feature detector by its name.
|
|
|
|
.. ocv:function:: Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
|
|
|
|
:param detectorType: Feature detector type.
|
|
|
|
The following detector types are supported:
|
|
|
|
* ``"FAST"`` -- :ocv:class:`FastFeatureDetector`
|
|
* ``"STAR"`` -- :ocv:class:`StarFeatureDetector`
|
|
* ``"SIFT"`` -- :ocv:class:`SIFT` (nonfree module)
|
|
* ``"SURF"`` -- :ocv:class:`SURF` (nonfree module)
|
|
* ``"ORB"`` -- :ocv:class:`ORB`
|
|
* ``"BRISK"`` -- :ocv:class:`BRISK`
|
|
* ``"MSER"`` -- :ocv:class:`MSER`
|
|
* ``"GFTT"`` -- :ocv:class:`GoodFeaturesToTrackDetector`
|
|
* ``"HARRIS"`` -- :ocv:class:`GoodFeaturesToTrackDetector` with Harris detector enabled
|
|
* ``"Dense"`` -- :ocv:class:`DenseFeatureDetector`
|
|
* ``"SimpleBlob"`` -- :ocv:class:`SimpleBlobDetector`
|
|
|
|
Also a combined format is supported: feature detector adapter name ( ``"Grid"`` --
|
|
:ocv:class:`GridAdaptedFeatureDetector`, ``"Pyramid"`` --
|
|
:ocv:class:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
|
|
for example: ``"GridFAST"``, ``"PyramidSTAR"`` .
|
|
|
|
FastFeatureDetector
|
|
-------------------
|
|
.. ocv:class:: FastFeatureDetector : public FeatureDetector
|
|
|
|
Wrapping class for feature detection using the
|
|
:ocv:func:`FAST` method. ::
|
|
|
|
class FastFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true, type=FastFeatureDetector::TYPE_9_16 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
GoodFeaturesToTrackDetector
|
|
---------------------------
|
|
.. ocv:class:: GoodFeaturesToTrackDetector : public FeatureDetector
|
|
|
|
Wrapping class for feature detection using the
|
|
:ocv:func:`goodFeaturesToTrack` function. ::
|
|
|
|
class GoodFeaturesToTrackDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
class Params
|
|
{
|
|
public:
|
|
Params( int maxCorners=1000, double qualityLevel=0.01,
|
|
double minDistance=1., int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
void read( const FileNode& fn );
|
|
void write( FileStorage& fs ) const;
|
|
|
|
int maxCorners;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
int blockSize;
|
|
bool useHarrisDetector;
|
|
double k;
|
|
};
|
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
|
|
GoodFeaturesToTrackDetector::Params() );
|
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
|
|
double minDistance, int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
MserFeatureDetector
|
|
-------------------
|
|
.. ocv:class:: MserFeatureDetector : public FeatureDetector
|
|
|
|
Wrapping class for feature detection using the
|
|
:ocv:class:`MSER` class. ::
|
|
|
|
class MserFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
|
|
MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
double maxVariation, double minDiversity,
|
|
int maxEvolution, double areaThreshold,
|
|
double minMargin, int edgeBlurSize );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
StarFeatureDetector
|
|
-------------------
|
|
.. ocv:class:: StarFeatureDetector : public FeatureDetector
|
|
|
|
The class implements the keypoint detector introduced by K. Konolige, synonym of ``StarDetector``. ::
|
|
|
|
class StarFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
|
|
int lineThresholdProjected = 10,
|
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
DenseFeatureDetector
|
|
--------------------
|
|
.. ocv:class:: DenseFeatureDetector : public FeatureDetector
|
|
|
|
Class for generation of image features which are distributed densely and regularly over the image. ::
|
|
|
|
class DenseFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
|
|
float featureScaleMul=0.1f,
|
|
int initXyStep=6, int initImgBound=0,
|
|
bool varyXyStepWithScale=true,
|
|
bool varyImgBoundWithScale=false );
|
|
protected:
|
|
...
|
|
};
|
|
|
|
The detector generates several levels (in the amount of ``featureScaleLevels``) of features. Features of each level are located in the nodes of a regular grid over the image (excluding the image boundary of given size). The level parameters (a feature scale, a node size, a size of boundary) are multiplied by ``featureScaleMul`` with level index growing depending on input flags, viz.:
|
|
|
|
* Feature scale is multiplied always.
|
|
|
|
* The grid node size is multiplied if ``varyXyStepWithScale`` is ``true``.
|
|
|
|
* Size of image boundary is multiplied if ``varyImgBoundWithScale`` is ``true``.
|
|
|
|
|
|
SimpleBlobDetector
|
|
-------------------
|
|
.. ocv:class:: SimpleBlobDetector : public FeatureDetector
|
|
|
|
Class for extracting blobs from an image. ::
|
|
|
|
class SimpleBlobDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
struct Params
|
|
{
|
|
Params();
|
|
float thresholdStep;
|
|
float minThreshold;
|
|
float maxThreshold;
|
|
size_t minRepeatability;
|
|
float minDistBetweenBlobs;
|
|
|
|
bool filterByColor;
|
|
uchar blobColor;
|
|
|
|
bool filterByArea;
|
|
float minArea, maxArea;
|
|
|
|
bool filterByCircularity;
|
|
float minCircularity, maxCircularity;
|
|
|
|
bool filterByInertia;
|
|
float minInertiaRatio, maxInertiaRatio;
|
|
|
|
bool filterByConvexity;
|
|
float minConvexity, maxConvexity;
|
|
};
|
|
|
|
SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
|
|
|
protected:
|
|
...
|
|
};
|
|
|
|
The class implements a simple algorithm for extracting blobs from an image:
|
|
|
|
#. Convert the source image to binary images by applying thresholding with several thresholds from ``minThreshold`` (inclusive) to ``maxThreshold`` (exclusive) with distance ``thresholdStep`` between neighboring thresholds.
|
|
|
|
#. Extract connected components from every binary image by :ocv:func:`findContours` and calculate their centers.
|
|
|
|
#. Group centers from several binary images by their coordinates. Close centers form one group that corresponds to one blob, which is controlled by the ``minDistBetweenBlobs`` parameter.
|
|
|
|
#. From the groups, estimate final centers of blobs and their radiuses and return as locations and sizes of keypoints.
|
|
|
|
This class performs several filtrations of returned blobs. You should set ``filterBy*`` to true/false to turn on/off corresponding filtration. Available filtrations:
|
|
|
|
* **By color**. This filter compares the intensity of a binary image at the center of a blob to ``blobColor``. If they differ, the blob is filtered out. Use ``blobColor = 0`` to extract dark blobs and ``blobColor = 255`` to extract light blobs.
|
|
|
|
* **By area**. Extracted blobs have an area between ``minArea`` (inclusive) and ``maxArea`` (exclusive).
|
|
|
|
* **By circularity**. Extracted blobs have circularity (:math:`\frac{4*\pi*Area}{perimeter * perimeter}`) between ``minCircularity`` (inclusive) and ``maxCircularity`` (exclusive).
|
|
|
|
* **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio between ``minInertiaRatio`` (inclusive) and ``maxInertiaRatio`` (exclusive).
|
|
|
|
* **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between ``minConvexity`` (inclusive) and ``maxConvexity`` (exclusive).
|
|
|
|
|
|
Default values of parameters are tuned to extract dark circular blobs.
|
|
|
|
GridAdaptedFeatureDetector
|
|
--------------------------
|
|
.. ocv:class:: GridAdaptedFeatureDetector : public FeatureDetector
|
|
|
|
Class adapting a detector to partition the source image into a grid and detect points in each cell. ::
|
|
|
|
class GridAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
/*
|
|
* detector Detector that will be adapted.
|
|
* maxTotalKeypoints Maximum count of keypoints detected on the image.
|
|
* Only the strongest keypoints will be kept.
|
|
* gridRows Grid row count.
|
|
* gridCols Grid column count.
|
|
*/
|
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int maxTotalKeypoints, int gridRows=4,
|
|
int gridCols=4 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
PyramidAdaptedFeatureDetector
|
|
-----------------------------
|
|
.. ocv:class:: PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
|
|
Class adapting a detector to detect points over multiple levels of a Gaussian pyramid. Consider using this class for detectors that are not inherently scaled. ::
|
|
|
|
class PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int levels=2 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
DynamicAdaptedFeatureDetector
|
|
-----------------------------
|
|
.. ocv:class:: DynamicAdaptedFeatureDetector : public FeatureDetector
|
|
|
|
Adaptively adjusting detector that iteratively detects features until the desired number is found. ::
|
|
|
|
class DynamicAdaptedFeatureDetector: public FeatureDetector
|
|
{
|
|
public:
|
|
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster,
|
|
int min_features=400, int max_features=500, int max_iters=5 );
|
|
...
|
|
};
|
|
|
|
If the detector is persisted, it "remembers" the parameters
|
|
used for the last detection. In this case, the detector may be used for consistent numbers
|
|
of keypoints in a set of temporally related images, such as video streams or
|
|
panorama series.
|
|
|
|
``DynamicAdaptedFeatureDetector`` uses another detector, such as FAST or SURF, to do the dirty work,
|
|
with the help of ``AdjusterAdapter`` .
|
|
If the detected number of features is not large enough,
|
|
``AdjusterAdapter`` adjusts the detection parameters so that the next detection
|
|
results in a bigger or smaller number of features. This is repeated until either the number of desired features are found
|
|
or the parameters are maxed out.
|
|
|
|
Adapters can be easily implemented for any detector via the
|
|
``AdjusterAdapter`` interface.
|
|
|
|
Beware that this is not thread-safe since the adjustment of parameters requires modification of the feature detector class instance.
|
|
|
|
Example of creating ``DynamicAdaptedFeatureDetector`` : ::
|
|
|
|
//sample usage:
|
|
//will create a detector that attempts to find
|
|
//100 - 110 FAST Keypoints, and will at most run
|
|
//FAST feature detection 10 times until that
|
|
//number of keypoints are found
|
|
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
|
|
new FastAdjuster(20,true)));
|
|
|
|
|
|
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
|
------------------------------------------------------------
|
|
The constructor
|
|
|
|
.. ocv:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 )
|
|
|
|
:param adjuster: :ocv:class:`AdjusterAdapter` that detects features and adjusts parameters.
|
|
|
|
:param min_features: Minimum desired number of features.
|
|
|
|
:param max_features: Maximum desired number of features.
|
|
|
|
:param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ocv:class:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf`` many iterations can be time-consuming. At each iteration the detector is rerun.
|
|
|
|
AdjusterAdapter
|
|
---------------
|
|
.. ocv:class:: AdjusterAdapter : public FeatureDetector
|
|
|
|
Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ocv:class:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ocv:class:`FeatureDetector` that enables adjusting parameters after feature detection. ::
|
|
|
|
class AdjusterAdapter: public FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~AdjusterAdapter() {}
|
|
virtual void tooFew(int min, int n_detected) = 0;
|
|
virtual void tooMany(int max, int n_detected) = 0;
|
|
virtual bool good() const = 0;
|
|
virtual Ptr<AdjusterAdapter> clone() const = 0;
|
|
static Ptr<AdjusterAdapter> create( const String& detectorType );
|
|
};
|
|
|
|
|
|
See
|
|
:ocv:class:`FastAdjuster`,
|
|
:ocv:class:`StarAdjuster`, and
|
|
:ocv:class:`SurfAdjuster` for concrete implementations.
|
|
|
|
AdjusterAdapter::tooFew
|
|
---------------------------
|
|
Adjusts the detector parameters to detect more features.
|
|
|
|
.. ocv:function:: void AdjusterAdapter::tooFew(int min, int n_detected)
|
|
|
|
:param min: Minimum desired number of features.
|
|
|
|
:param n_detected: Number of features detected during the latest run.
|
|
|
|
Example: ::
|
|
|
|
void FastAdjuster::tooFew(int min, int n_detected)
|
|
{
|
|
thresh_--;
|
|
}
|
|
|
|
AdjusterAdapter::tooMany
|
|
----------------------------
|
|
Adjusts the detector parameters to detect less features.
|
|
|
|
.. ocv:function:: void AdjusterAdapter::tooMany(int max, int n_detected)
|
|
|
|
:param max: Maximum desired number of features.
|
|
|
|
:param n_detected: Number of features detected during the latest run.
|
|
|
|
Example: ::
|
|
|
|
void FastAdjuster::tooMany(int min, int n_detected)
|
|
{
|
|
thresh_++;
|
|
}
|
|
|
|
|
|
AdjusterAdapter::good
|
|
---------------------
|
|
Returns false if the detector parameters cannot be adjusted any more.
|
|
|
|
.. ocv:function:: bool AdjusterAdapter::good() const
|
|
|
|
Example: ::
|
|
|
|
bool FastAdjuster::good() const
|
|
{
|
|
return (thresh_ > 1) && (thresh_ < 200);
|
|
}
|
|
|
|
AdjusterAdapter::create
|
|
-----------------------
|
|
Creates an adjuster adapter by name
|
|
|
|
.. ocv:function:: Ptr<AdjusterAdapter> AdjusterAdapter::create( const String& detectorType )
|
|
|
|
Creates an adjuster adapter by name ``detectorType``. The detector name is the same as in :ocv:func:`FeatureDetector::create`, but now supports ``"FAST"``, ``"STAR"``, and ``"SURF"`` only.
|
|
|
|
FastAdjuster
|
|
------------
|
|
.. ocv:class:: FastAdjuster : public AdjusterAdapter
|
|
|
|
:ocv:class:`AdjusterAdapter` for :ocv:class:`FastFeatureDetector`. This class decreases or increases the threshold value by 1. ::
|
|
|
|
class FastAdjuster FastAdjuster: public AdjusterAdapter
|
|
{
|
|
public:
|
|
FastAdjuster(int init_thresh = 20, bool nonmax = true);
|
|
...
|
|
};
|
|
|
|
StarAdjuster
|
|
------------
|
|
.. ocv:class:: StarAdjuster : public AdjusterAdapter
|
|
|
|
:ocv:class:`AdjusterAdapter` for :ocv:class:`StarFeatureDetector`. This class adjusts the ``responseThreshhold`` of ``StarFeatureDetector``. ::
|
|
|
|
class StarAdjuster: public AdjusterAdapter
|
|
{
|
|
StarAdjuster(double initial_thresh = 30.0);
|
|
...
|
|
};
|
|
|
|
SurfAdjuster
|
|
------------
|
|
.. ocv:class:: SurfAdjuster : public AdjusterAdapter
|
|
|
|
:ocv:class:`AdjusterAdapter` for ``SurfFeatureDetector``. ::
|
|
|
|
class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
|
|
{
|
|
public:
|
|
SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );
|
|
|
|
virtual void tooFew(int minv, int n_detected);
|
|
virtual void tooMany(int maxv, int n_detected);
|
|
virtual bool good() const;
|
|
|
|
virtual Ptr<AdjusterAdapter> clone() const;
|
|
|
|
...
|
|
};
|