129 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| Camshift tracker
 | |
| ================
 | |
| 
 | |
| This is a demo that shows mean-shift based tracking
 | |
| You select a color objects such as your face and it tracks it.
 | |
| This reads from video camera (0 by default, or the camera number the user enters)
 | |
| 
 | |
| http://www.robinhewitt.com/research/track/camshift.html
 | |
| 
 | |
| Usage:
 | |
| ------
 | |
|     camshift.py [<video source>]
 | |
| 
 | |
|     To initialize tracking, select the object with mouse
 | |
| 
 | |
| Keys:
 | |
| -----
 | |
|     ESC   - exit
 | |
|     b     - toggle back-projected probability visualization
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| import sys
 | |
| PY3 = sys.version_info[0] == 3
 | |
| 
 | |
| if PY3:
 | |
|     xrange = range
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| 
 | |
| # local module
 | |
| import video
 | |
| from video import presets
 | |
| 
 | |
| 
 | |
| class App(object):
 | |
|     def __init__(self, video_src):
 | |
|         self.cam = video.create_capture(video_src, presets['cube'])
 | |
|         ret, self.frame = self.cam.read()
 | |
|         cv2.namedWindow('camshift')
 | |
|         cv2.setMouseCallback('camshift', self.onmouse)
 | |
| 
 | |
|         self.selection = None
 | |
|         self.drag_start = None
 | |
|         self.show_backproj = False
 | |
|         self.track_window = None
 | |
| 
 | |
|     def onmouse(self, event, x, y, flags, param):
 | |
|         if event == cv2.EVENT_LBUTTONDOWN:
 | |
|             self.drag_start = (x, y)
 | |
|             self.track_window = None
 | |
|         if self.drag_start:
 | |
|             xmin = min(x, self.drag_start[0])
 | |
|             ymin = min(y, self.drag_start[1])
 | |
|             xmax = max(x, self.drag_start[0])
 | |
|             ymax = max(y, self.drag_start[1])
 | |
|             self.selection = (xmin, ymin, xmax, ymax)
 | |
|         if event == cv2.EVENT_LBUTTONUP:
 | |
|             self.drag_start = None
 | |
|             self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
 | |
| 
 | |
|     def show_hist(self):
 | |
|         bin_count = self.hist.shape[0]
 | |
|         bin_w = 24
 | |
|         img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
 | |
|         for i in xrange(bin_count):
 | |
|             h = int(self.hist[i])
 | |
|             cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
 | |
|         img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
 | |
|         cv2.imshow('hist', img)
 | |
| 
 | |
|     def run(self):
 | |
|         while True:
 | |
|             ret, self.frame = self.cam.read()
 | |
|             vis = self.frame.copy()
 | |
|             hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
 | |
|             mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
 | |
| 
 | |
|             if self.selection:
 | |
|                 x0, y0, x1, y1 = self.selection
 | |
|                 hsv_roi = hsv[y0:y1, x0:x1]
 | |
|                 mask_roi = mask[y0:y1, x0:x1]
 | |
|                 hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
 | |
|                 cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
 | |
|                 self.hist = hist.reshape(-1)
 | |
|                 self.show_hist()
 | |
| 
 | |
|                 vis_roi = vis[y0:y1, x0:x1]
 | |
|                 cv2.bitwise_not(vis_roi, vis_roi)
 | |
|                 vis[mask == 0] = 0
 | |
| 
 | |
|             if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
 | |
|                 self.selection = None
 | |
|                 prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
 | |
|                 prob &= mask
 | |
|                 term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
 | |
|                 track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
 | |
| 
 | |
|                 if self.show_backproj:
 | |
|                     vis[:] = prob[...,np.newaxis]
 | |
|                 try:
 | |
|                     cv2.ellipse(vis, track_box, (0, 0, 255), 2)
 | |
|                 except:
 | |
|                     print(track_box)
 | |
| 
 | |
|             cv2.imshow('camshift', vis)
 | |
| 
 | |
|             ch = 0xFF & cv2.waitKey(5)
 | |
|             if ch == 27:
 | |
|                 break
 | |
|             if ch == ord('b'):
 | |
|                 self.show_backproj = not self.show_backproj
 | |
|         cv2.destroyAllWindows()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     import sys
 | |
|     try:
 | |
|         video_src = sys.argv[1]
 | |
|     except:
 | |
|         video_src = 0
 | |
|     print(__doc__)
 | |
|     App(video_src).run()
 |