785 lines
32 KiB
C++
785 lines
32 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, double, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, double, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, double, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, double, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
double cv::gpu::threshold(const GpuMat&, GpuMat&, double, double, int) {throw_nogpu(); return 0.0;}
|
|
double cv::gpu::threshold(const GpuMat&, GpuMat&, double, double, int, const Stream&) {throw_nogpu(); return 0.0;}
|
|
|
|
#else
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Basic arithmetical operations (add subtract multiply divide)
|
|
|
|
namespace
|
|
{
|
|
typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor);
|
|
typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst, int nDstStep, NppiSize oSizeROI);
|
|
typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
|
|
|
|
void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
|
|
npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4,
|
|
npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
|
|
dst.create( src1.size(), src1.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
switch (src1.type())
|
|
{
|
|
case CV_8UC1:
|
|
nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step, src2.ptr<Npp8u>(), src2.step, dst.ptr<Npp8u>(), dst.step, sz, 0) );
|
|
break;
|
|
case CV_8UC4:
|
|
nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step, src2.ptr<Npp8u>(), src2.step, dst.ptr<Npp8u>(), dst.step, sz, 0) );
|
|
break;
|
|
case CV_32SC1:
|
|
nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step, src2.ptr<Npp32s>(), src2.step, dst.ptr<Npp32s>(), dst.step, sz) );
|
|
break;
|
|
case CV_32FC1:
|
|
nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step, src2.ptr<Npp32f>(), src2.step, dst.ptr<Npp32f>(), dst.step, sz) );
|
|
break;
|
|
default:
|
|
CV_Assert(!"Unsupported source type");
|
|
}
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
|
|
template<int SCN> struct NppArithmScalarFunc;
|
|
template<> struct NppArithmScalarFunc<1>
|
|
{
|
|
typedef NppStatus (*func_ptr)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst, int nDstStep, NppiSize oSizeROI);
|
|
};
|
|
template<> struct NppArithmScalarFunc<2>
|
|
{
|
|
typedef NppStatus (*func_ptr)(const Npp32fc *pSrc, int nSrcStep, Npp32fc nValue, Npp32fc *pDst, int nDstStep, NppiSize oSizeROI);
|
|
};
|
|
|
|
template<int SCN, typename NppArithmScalarFunc<SCN>::func_ptr func> struct NppArithmScalar;
|
|
|
|
template<typename NppArithmScalarFunc<1>::func_ptr func> struct NppArithmScalar<1, func>
|
|
{
|
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( func(src.ptr<Npp32f>(), src.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
};
|
|
template<typename NppArithmScalarFunc<2>::func_ptr func> struct NppArithmScalar<2, func>
|
|
{
|
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
Npp32fc nValue;
|
|
nValue.re = (Npp32f)sc[0];
|
|
nValue.im = (Npp32f)sc[1];
|
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, nValue, dst.ptr<Npp32fc>(), dst.step, sz) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
};
|
|
}
|
|
|
|
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiAddC_32f_C1R>::calc, NppArithmScalar<2, nppiAddC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiSubC_32f_C1R>::calc, NppArithmScalar<2, nppiSubC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiMulC_32f_C1R>::calc, NppArithmScalar<2, nppiMulC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiDivC_32f_C1R>::calc, NppArithmScalar<2, nppiDivC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Absolute difference
|
|
|
|
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
|
|
|
|
dst.create( src1.size(), src1.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
switch (src1.type())
|
|
{
|
|
case CV_8UC1:
|
|
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step, src2.ptr<Npp8u>(), src2.step, dst.ptr<Npp8u>(), dst.step, sz) );
|
|
break;
|
|
case CV_8UC4:
|
|
nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step, src2.ptr<Npp8u>(), src2.step, dst.ptr<Npp8u>(), dst.step, sz) );
|
|
break;
|
|
case CV_32SC1:
|
|
nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step, src2.ptr<Npp32s>(), src2.step, dst.ptr<Npp32s>(), dst.step, sz) );
|
|
break;
|
|
case CV_32FC1:
|
|
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step, src2.ptr<Npp32f>(), src2.step, dst.ptr<Npp32f>(), dst.step, sz) );
|
|
break;
|
|
default:
|
|
CV_Assert(!"Unsupported source type");
|
|
}
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
|
|
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC1);
|
|
|
|
dst.create( src.size(), src.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Comparison of two matrixes
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
|
|
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
|
|
}}}
|
|
|
|
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
|
|
|
|
dst.create( src1.size(), CV_8UC1 );
|
|
|
|
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
if (src1.type() == CV_8UC4)
|
|
{
|
|
if (cmpop != CMP_NE)
|
|
{
|
|
nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
else
|
|
{
|
|
mathfunc::compare_ne_8uc4(src1, src2, dst);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmpop != CMP_NE)
|
|
{
|
|
nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step,
|
|
src2.ptr<Npp32f>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
else
|
|
{
|
|
mathfunc::compare_ne_32f(src1, src2, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Unary bitwise logical operations
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void bitwiseNotCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src, PtrStep dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
cv::gpu::mathfunc::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(),
|
|
dst.channels(), src, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
using namespace cv::gpu;
|
|
|
|
typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
|
|
static Caller callers[] = {mathfunc::bitwiseMaskNotCaller<unsigned char>, mathfunc::bitwiseMaskNotCaller<unsigned char>,
|
|
mathfunc::bitwiseMaskNotCaller<unsigned short>, mathfunc::bitwiseMaskNotCaller<unsigned short>,
|
|
mathfunc::bitwiseMaskNotCaller<unsigned int>, mathfunc::bitwiseMaskNotCaller<unsigned int>,
|
|
mathfunc::bitwiseMaskNotCaller<unsigned int>};
|
|
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
|
|
dst.create(src.size(), src.type());
|
|
|
|
Caller caller = callers[src.depth()];
|
|
CV_Assert(caller);
|
|
|
|
int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
|
|
caller(src.rows, src.cols, cn, src, mask, dst, stream);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseNotCaller(src, dst, 0);
|
|
else
|
|
::bitwiseNotCaller(src, dst, mask, 0);
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseNotCaller(src, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Binary bitwise logical operations
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void bitwiseOrCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
|
|
|
|
void bitwiseAndCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
|
|
|
|
void bitwiseXorCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
|
|
}}}
|
|
|
|
|
|
namespace
|
|
{
|
|
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
cv::gpu::mathfunc::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(),
|
|
dst.channels(), src1, src2, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
using namespace cv::gpu;
|
|
|
|
typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
|
|
static Caller callers[] = {mathfunc::bitwiseMaskOrCaller<unsigned char>, mathfunc::bitwiseMaskOrCaller<unsigned char>,
|
|
mathfunc::bitwiseMaskOrCaller<unsigned short>, mathfunc::bitwiseMaskOrCaller<unsigned short>,
|
|
mathfunc::bitwiseMaskOrCaller<unsigned int>, mathfunc::bitwiseMaskOrCaller<unsigned int>,
|
|
mathfunc::bitwiseMaskOrCaller<unsigned int>};
|
|
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
Caller caller = callers[src1.depth()];
|
|
CV_Assert(caller);
|
|
|
|
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
|
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
cv::gpu::mathfunc::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(),
|
|
dst.channels(), src1, src2, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
using namespace cv::gpu;
|
|
|
|
typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
|
|
static Caller callers[] = {mathfunc::bitwiseMaskAndCaller<unsigned char>, mathfunc::bitwiseMaskAndCaller<unsigned char>,
|
|
mathfunc::bitwiseMaskAndCaller<unsigned short>, mathfunc::bitwiseMaskAndCaller<unsigned short>,
|
|
mathfunc::bitwiseMaskAndCaller<unsigned int>, mathfunc::bitwiseMaskAndCaller<unsigned int>,
|
|
mathfunc::bitwiseMaskAndCaller<unsigned int>};
|
|
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
Caller caller = callers[src1.depth()];
|
|
CV_Assert(caller);
|
|
|
|
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
|
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
cv::gpu::mathfunc::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(),
|
|
dst.channels(), src1, src2, dst, stream);
|
|
}
|
|
|
|
|
|
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
using namespace cv::gpu;
|
|
|
|
typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
|
|
static Caller callers[] = {mathfunc::bitwiseMaskXorCaller<unsigned char>, mathfunc::bitwiseMaskXorCaller<unsigned char>,
|
|
mathfunc::bitwiseMaskXorCaller<unsigned short>, mathfunc::bitwiseMaskXorCaller<unsigned short>,
|
|
mathfunc::bitwiseMaskXorCaller<unsigned int>, mathfunc::bitwiseMaskXorCaller<unsigned int>,
|
|
mathfunc::bitwiseMaskXorCaller<unsigned int>};
|
|
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
|
|
Caller caller = callers[src1.depth()];
|
|
CV_Assert(caller);
|
|
|
|
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
|
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
|
}
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseOrCaller(src1, src2, dst, 0);
|
|
else
|
|
::bitwiseOrCaller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseOrCaller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwiseOrCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseAndCaller(src1, src2, dst, 0);
|
|
else
|
|
::bitwiseAndCaller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseAndCaller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwiseAndCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseXorCaller(src1, src2, dst, 0);
|
|
else
|
|
::bitwiseXorCaller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwiseXorCaller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwiseXorCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Minimum and maximum operations
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
template <typename T>
|
|
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void min_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void max_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
void min_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::min_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void min_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::min_gpu<T>(src1.reshape(1), src2, dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::max_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void max_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::max_gpu<T>(src1.reshape(1), src2, dst.reshape(1), stream);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// threshold
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
template <typename T>
|
|
void threshold_gpu(const DevMem2D& src, const DevMem2D& dst, float thresh, float maxVal, int type,
|
|
cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
void threshold_caller(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type,
|
|
cudaStream_t stream = 0)
|
|
{
|
|
using namespace cv::gpu::mathfunc;
|
|
|
|
typedef void (*caller_t)(const DevMem2D& src, const DevMem2D& dst, float thresh, float maxVal, int type,
|
|
cudaStream_t stream);
|
|
|
|
static const caller_t callers[] =
|
|
{
|
|
threshold_gpu<unsigned char>, threshold_gpu<signed char>,
|
|
threshold_gpu<unsigned short>, threshold_gpu<short>, threshold_gpu<int>, threshold_gpu<float>, 0
|
|
};
|
|
|
|
CV_Assert(src.channels() == 1 && src.depth() < CV_64F);
|
|
CV_Assert(type <= THRESH_TOZERO_INV);
|
|
|
|
dst.create(src.size(), src.type());
|
|
|
|
if (src.depth() != CV_32F)
|
|
{
|
|
thresh = cvFloor(thresh);
|
|
maxVal = cvRound(maxVal);
|
|
}
|
|
|
|
callers[src.depth()](src, dst, static_cast<float>(thresh), static_cast<float>(maxVal), type, stream);
|
|
}
|
|
}
|
|
|
|
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type)
|
|
{
|
|
if (src.type() == CV_32FC1 && type == THRESH_TRUNC)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiThreshold_32f_C1R(src.ptr<Npp32f>(), src.step,
|
|
dst.ptr<Npp32f>(), dst.step, sz, static_cast<Npp32f>(thresh), NPP_CMP_GREATER) );
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
}
|
|
else
|
|
{
|
|
threshold_caller(src, dst, thresh, maxVal, type);
|
|
}
|
|
|
|
return thresh;
|
|
}
|
|
|
|
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, const Stream& stream)
|
|
{
|
|
threshold_caller(src, dst, thresh, maxVal, type, StreamAccessor::getStream(stream));
|
|
return thresh;
|
|
}
|
|
|
|
#endif |