162 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Erping Pang,   pang_er_ping@163.com
 | 
						|
//    Xiaopeng Fu,   fuxiaopeng2222@163.com
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other oclMaterials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_OPENCL
 | 
						|
 | 
						|
using namespace cvtest;
 | 
						|
using namespace testing;
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
#define OCL_KMEANS_USE_INITIAL_LABELS 1
 | 
						|
#define OCL_KMEANS_PP_CENTERS         2
 | 
						|
 | 
						|
PARAM_TEST_CASE(Kmeans, int, int, int)
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    int K;
 | 
						|
    int flags;
 | 
						|
    cv::Mat src ;
 | 
						|
    ocl::oclMat d_src, d_dists;
 | 
						|
 | 
						|
    Mat labels, centers;
 | 
						|
    ocl::oclMat d_labels, d_centers;
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        K = GET_PARAM(0);
 | 
						|
        type = GET_PARAM(1);
 | 
						|
        flags = GET_PARAM(2);
 | 
						|
 | 
						|
        // MWIDTH=256, MHEIGHT=256. defined in utility.hpp
 | 
						|
        cv::Size size = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
        src.create(size, type);
 | 
						|
        int row_idx = 0;
 | 
						|
        const int max_neighbour = MHEIGHT / K - 1;
 | 
						|
        CV_Assert(K <= MWIDTH);
 | 
						|
        for(int i = 0; i < K; i++ )
 | 
						|
        {
 | 
						|
            Mat center_row_header = src.row(row_idx);
 | 
						|
            center_row_header.setTo(0);
 | 
						|
            int nchannel = center_row_header.channels();
 | 
						|
            for(int j = 0; j < nchannel; j++)
 | 
						|
                center_row_header.at<float>(0, i*nchannel+j) = 50000.0;
 | 
						|
 | 
						|
            for(int j = 0; (j < max_neighbour) ||
 | 
						|
                           (i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
 | 
						|
            {
 | 
						|
                Mat cur_row_header = src.row(row_idx + 1 + j);
 | 
						|
                center_row_header.copyTo(cur_row_header);
 | 
						|
                Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false);
 | 
						|
                cur_row_header += tmpmat;
 | 
						|
            }
 | 
						|
            row_idx += 1 + max_neighbour;
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
OCL_TEST_P(Kmeans, Mat){
 | 
						|
 | 
						|
    if(flags & KMEANS_USE_INITIAL_LABELS)
 | 
						|
    {
 | 
						|
        // inital a given labels
 | 
						|
        labels.create(src.rows, 1, CV_32S);
 | 
						|
        int *label = labels.ptr<int>();
 | 
						|
        for(int i = 0; i < src.rows; i++)
 | 
						|
            label[i] = rng.uniform(0, K);
 | 
						|
        d_labels.upload(labels);
 | 
						|
    }
 | 
						|
    d_src.upload(src);
 | 
						|
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        kmeans(src, K, labels,
 | 
						|
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
 | 
						|
            1, flags, centers);
 | 
						|
 | 
						|
        ocl::kmeans(d_src, K, d_labels,
 | 
						|
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
 | 
						|
            1, flags, d_centers);
 | 
						|
 | 
						|
        Mat dd_labels(d_labels);
 | 
						|
        Mat dd_centers(d_centers);
 | 
						|
        if(flags & KMEANS_USE_INITIAL_LABELS)
 | 
						|
        {
 | 
						|
            EXPECT_MAT_NEAR(labels, dd_labels, 0);
 | 
						|
            EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int row_idx = 0;
 | 
						|
            for(int i = 0; i < K; i++)
 | 
						|
            {
 | 
						|
                // verify lables with ground truth resutls
 | 
						|
                int label = labels.at<int>(row_idx);
 | 
						|
                int header_label = dd_labels.at<int>(row_idx);
 | 
						|
                for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++)
 | 
						|
                {
 | 
						|
                    ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0);
 | 
						|
                    ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0);
 | 
						|
                }
 | 
						|
 | 
						|
                // verify centers
 | 
						|
                float *center = centers.ptr<float>(label);
 | 
						|
                float *header_center = dd_centers.ptr<float>(header_label);
 | 
						|
                for(int t = 0; t < centers.cols; t++)
 | 
						|
                    ASSERT_NEAR(center[t], header_center[t], 1e-3);
 | 
						|
 | 
						|
                row_idx += MHEIGHT/K;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
 | 
						|
    Values(3, 5, 8),
 | 
						|
    Values(CV_32FC1, CV_32FC2, CV_32FC4),
 | 
						|
    Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
 | 
						|
 | 
						|
#endif
 |