209 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Nathan, liujun@multicorewareinc.com
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other oclMaterials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors as is and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
#ifdef HAVE_OPENCL
 | 
						|
namespace
 | 
						|
{
 | 
						|
    /////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
    // BruteForceMatcher
 | 
						|
    CV_ENUM(DistType, BruteForceMatcher_OCL_base::L1Dist,
 | 
						|
                      BruteForceMatcher_OCL_base::L2Dist,
 | 
						|
                      BruteForceMatcher_OCL_base::HammingDist)
 | 
						|
    IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
 | 
						|
    PARAM_TEST_CASE(BruteForceMatcher, DistType, DescriptorSize)
 | 
						|
    {
 | 
						|
        cv::ocl::BruteForceMatcher_OCL_base::DistType distType;
 | 
						|
        int normCode;
 | 
						|
        int dim;
 | 
						|
 | 
						|
        int queryDescCount;
 | 
						|
        int countFactor;
 | 
						|
 | 
						|
        cv::Mat query, train;
 | 
						|
 | 
						|
        virtual void SetUp()
 | 
						|
        {
 | 
						|
            distType = (cv::ocl::BruteForceMatcher_OCL_base::DistType)(int)GET_PARAM(0);
 | 
						|
            dim = GET_PARAM(1);
 | 
						|
 | 
						|
            queryDescCount = 300; // must be even number because we split train data in some cases in two
 | 
						|
            countFactor = 4; // do not change it
 | 
						|
 | 
						|
            cv::Mat queryBuf, trainBuf;
 | 
						|
 | 
						|
            // Generate query descriptors randomly.
 | 
						|
            // Descriptor vector elements are integer values.
 | 
						|
            queryBuf.create(queryDescCount, dim, CV_32SC1);
 | 
						|
            rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
 | 
						|
            queryBuf.convertTo(queryBuf, CV_32FC1);
 | 
						|
 | 
						|
            // Generate train decriptors as follows:
 | 
						|
            // copy each query descriptor to train set countFactor times
 | 
						|
            // and perturb some one element of the copied descriptors in
 | 
						|
            // in ascending order. General boundaries of the perturbation
 | 
						|
            // are (0.f, 1.f).
 | 
						|
            trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
 | 
						|
            float step = 1.f / countFactor;
 | 
						|
            for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
 | 
						|
            {
 | 
						|
                cv::Mat queryDescriptor = queryBuf.row(qIdx);
 | 
						|
                for (int c = 0; c < countFactor; c++)
 | 
						|
                {
 | 
						|
                    int tIdx = qIdx * countFactor + c;
 | 
						|
                    cv::Mat trainDescriptor = trainBuf.row(tIdx);
 | 
						|
                    queryDescriptor.copyTo(trainDescriptor);
 | 
						|
                    int elem = rng(dim);
 | 
						|
                    float diff = rng.uniform(step * c, step * (c + 1));
 | 
						|
                    trainDescriptor.at<float>(0, elem) += diff;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            queryBuf.convertTo(query, CV_32F);
 | 
						|
            trainBuf.convertTo(train, CV_32F);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    OCL_TEST_P(BruteForceMatcher, Match_Single)
 | 
						|
    {
 | 
						|
        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
 | 
						|
 | 
						|
        std::vector<cv::DMatch> matches;
 | 
						|
        matcher.match(cv::ocl::oclMat(query),  cv::ocl::oclMat(train),  matches);
 | 
						|
 | 
						|
        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
        int badCount = 0;
 | 
						|
        for (size_t i = 0; i < matches.size(); i++)
 | 
						|
        {
 | 
						|
            cv::DMatch match = matches[i];
 | 
						|
            if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
 | 
						|
                badCount++;
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_EQ(0, badCount);
 | 
						|
    }
 | 
						|
 | 
						|
    OCL_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
 | 
						|
    {
 | 
						|
        const int knn = 2;
 | 
						|
 | 
						|
        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
 | 
						|
 | 
						|
        std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
        matcher.knnMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, knn);
 | 
						|
 | 
						|
        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
        int badCount = 0;
 | 
						|
        for (size_t i = 0; i < matches.size(); i++)
 | 
						|
        {
 | 
						|
            if ((int)matches[i].size() != knn)
 | 
						|
                badCount++;
 | 
						|
            else
 | 
						|
            {
 | 
						|
                int localBadCount = 0;
 | 
						|
                for (int k = 0; k < knn; k++)
 | 
						|
                {
 | 
						|
                    cv::DMatch match = matches[i][k];
 | 
						|
                    if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
 | 
						|
                        localBadCount++;
 | 
						|
                }
 | 
						|
                badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_EQ(0, badCount);
 | 
						|
    }
 | 
						|
 | 
						|
    OCL_TEST_P(BruteForceMatcher, RadiusMatch_Single)
 | 
						|
    {
 | 
						|
        float radius = 1.f / countFactor;
 | 
						|
 | 
						|
        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
 | 
						|
 | 
						|
        std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
        matcher.radiusMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, radius);
 | 
						|
 | 
						|
        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
        int badCount = 0;
 | 
						|
        for (size_t i = 0; i < matches.size(); i++)
 | 
						|
        {
 | 
						|
            if ((int)matches[i].size() != 1)
 | 
						|
            {
 | 
						|
                badCount++;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][0];
 | 
						|
                if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
 | 
						|
                    badCount++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_EQ(0, badCount);
 | 
						|
    }
 | 
						|
 | 
						|
    INSTANTIATE_TEST_CASE_P(OCL_Features2D, BruteForceMatcher,
 | 
						|
        testing::Combine(
 | 
						|
        testing::Values(
 | 
						|
            DistType(cv::ocl::BruteForceMatcher_OCL_base::L1Dist),
 | 
						|
            DistType(cv::ocl::BruteForceMatcher_OCL_base::L2Dist)/*,
 | 
						|
            DistType(cv::ocl::BruteForceMatcher_OCL_base::HammingDist)*/
 | 
						|
        ),
 | 
						|
        testing::Values(
 | 
						|
            DescriptorSize(57),
 | 
						|
            DescriptorSize(64),
 | 
						|
            DescriptorSize(83),
 | 
						|
            DescriptorSize(128),
 | 
						|
            DescriptorSize(179),
 | 
						|
            DescriptorSize(256),
 | 
						|
            DescriptorSize(304))
 | 
						|
        )
 | 
						|
    );
 | 
						|
} // namespace
 | 
						|
#endif
 |