261 lines
5.9 KiB
C

#include "clapack.h"
/* Table of constant values */
static real c_b3 = 2.f;
static real c_b4 = 1.f;
/* Subroutine */ int slasv2_(real *f, real *g, real *h__, real *ssmin, real *
ssmax, real *snr, real *csr, real *snl, real *csl)
{
/* System generated locals */
real r__1;
/* Builtin functions */
double sqrt(doublereal), r_sign(real *, real *);
/* Local variables */
real a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt, crt,
slt, srt;
integer pmax;
real temp;
logical swap;
real tsign;
logical gasmal;
extern doublereal slamch_(char *);
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLASV2 computes the singular value decomposition of a 2-by-2 */
/* triangular matrix */
/* [ F G ] */
/* [ 0 H ]. */
/* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */
/* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */
/* right singular vectors for abs(SSMAX), giving the decomposition */
/* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] */
/* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. */
/* Arguments */
/* ========= */
/* F (input) REAL */
/* The (1,1) element of the 2-by-2 matrix. */
/* G (input) REAL */
/* The (1,2) element of the 2-by-2 matrix. */
/* H (input) REAL */
/* The (2,2) element of the 2-by-2 matrix. */
/* SSMIN (output) REAL */
/* abs(SSMIN) is the smaller singular value. */
/* SSMAX (output) REAL */
/* abs(SSMAX) is the larger singular value. */
/* SNL (output) REAL */
/* CSL (output) REAL */
/* The vector (CSL, SNL) is a unit left singular vector for the */
/* singular value abs(SSMAX). */
/* SNR (output) REAL */
/* CSR (output) REAL */
/* The vector (CSR, SNR) is a unit right singular vector for the */
/* singular value abs(SSMAX). */
/* Further Details */
/* =============== */
/* Any input parameter may be aliased with any output parameter. */
/* Barring over/underflow and assuming a guard digit in subtraction, all */
/* output quantities are correct to within a few units in the last */
/* place (ulps). */
/* In IEEE arithmetic, the code works correctly if one matrix element is */
/* infinite. */
/* Overflow will not occur unless the largest singular value itself */
/* overflows or is within a few ulps of overflow. (On machines with */
/* partial overflow, like the Cray, overflow may occur if the largest */
/* singular value is within a factor of 2 of overflow.) */
/* Underflow is harmless if underflow is gradual. Otherwise, results */
/* may correspond to a matrix modified by perturbations of size near */
/* the underflow threshold. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
ft = *f;
fa = dabs(ft);
ht = *h__;
ha = dabs(*h__);
/* PMAX points to the maximum absolute element of matrix */
/* PMAX = 1 if F largest in absolute values */
/* PMAX = 2 if G largest in absolute values */
/* PMAX = 3 if H largest in absolute values */
pmax = 1;
swap = ha > fa;
if (swap) {
pmax = 3;
temp = ft;
ft = ht;
ht = temp;
temp = fa;
fa = ha;
ha = temp;
/* Now FA .ge. HA */
}
gt = *g;
ga = dabs(gt);
if (ga == 0.f) {
/* Diagonal matrix */
*ssmin = ha;
*ssmax = fa;
clt = 1.f;
crt = 1.f;
slt = 0.f;
srt = 0.f;
} else {
gasmal = TRUE_;
if (ga > fa) {
pmax = 2;
if (fa / ga < slamch_("EPS")) {
/* Case of very large GA */
gasmal = FALSE_;
*ssmax = ga;
if (ha > 1.f) {
*ssmin = fa / (ga / ha);
} else {
*ssmin = fa / ga * ha;
}
clt = 1.f;
slt = ht / gt;
srt = 1.f;
crt = ft / gt;
}
}
if (gasmal) {
/* Normal case */
d__ = fa - ha;
if (d__ == fa) {
/* Copes with infinite F or H */
l = 1.f;
} else {
l = d__ / fa;
}
/* Note that 0 .le. L .le. 1 */
m = gt / ft;
/* Note that abs(M) .le. 1/macheps */
t = 2.f - l;
/* Note that T .ge. 1 */
mm = m * m;
tt = t * t;
s = sqrt(tt + mm);
/* Note that 1 .le. S .le. 1 + 1/macheps */
if (l == 0.f) {
r__ = dabs(m);
} else {
r__ = sqrt(l * l + mm);
}
/* Note that 0 .le. R .le. 1 + 1/macheps */
a = (s + r__) * .5f;
/* Note that 1 .le. A .le. 1 + abs(M) */
*ssmin = ha / a;
*ssmax = fa * a;
if (mm == 0.f) {
/* Note that M is very tiny */
if (l == 0.f) {
t = r_sign(&c_b3, &ft) * r_sign(&c_b4, &gt);
} else {
t = gt / r_sign(&d__, &ft) + m / t;
}
} else {
t = (m / (s + t) + m / (r__ + l)) * (a + 1.f);
}
l = sqrt(t * t + 4.f);
crt = 2.f / l;
srt = t / l;
clt = (crt + srt * m) / a;
slt = ht / ft * srt / a;
}
}
if (swap) {
*csl = srt;
*snl = crt;
*csr = slt;
*snr = clt;
} else {
*csl = clt;
*snl = slt;
*csr = crt;
*snr = srt;
}
/* Correct signs of SSMAX and SSMIN */
if (pmax == 1) {
tsign = r_sign(&c_b4, csr) * r_sign(&c_b4, csl) * r_sign(&c_b4, f);
}
if (pmax == 2) {
tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, csl) * r_sign(&c_b4, g);
}
if (pmax == 3) {
tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, snl) * r_sign(&c_b4, h__);
}
*ssmax = r_sign(ssmax, &tsign);
r__1 = tsign * r_sign(&c_b4, f) * r_sign(&c_b4, h__);
*ssmin = r_sign(ssmin, &r__1);
return 0;
/* End of SLASV2 */
} /* slasv2_ */