Files
opencv/tests/cxcore/src/apca.cpp
2010-10-19 15:06:22 +00:00

309 lines
10 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cxcoretest.h"
using namespace cv;
#define CHECK_C
Size sz( 200, 500);
class CV_PCATest : public CvTest
{
public:
CV_PCATest() : CvTest( "pca", "PCA funcs" ) {}
protected:
void run( int);
};
#if 0
void CV_PCATest::run( int )
{
int code = CvTS::OK, err;
int maxComponents = 1;
Mat points( 1000, 3, CV_32FC1);
RNG rng = *ts->get_rng(); // get ts->rng seed
rng.fill( points, RNG::NORMAL, Scalar::all(0.0), Scalar::all(1.0) );
float mp[] = { 3.0f, 3.0f, 3.0f }, cp[] = { 0.5f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.3f };
Mat mean( 1, 3, CV_32FC1, mp ),
cov( 3, 3, CV_32FC1, cp );
for( int i = 0; i < points.rows; i++ )
{
Mat r(1, points.cols, CV_32FC1, points.ptr<float>(i));
r = r * cov + mean;
}
PCA pca( points, Mat(), CV_PCA_DATA_AS_ROW, maxComponents );
// check project
Mat prjPoints = pca.project( points );
err = 0;
for( int i = 0; i < prjPoints.rows; i++ )
{
float val = prjPoints.at<float>(i,0);
if( val > 3.0f || val < -3.0f )
err++;
}
float projectErr = 0.02f;
if( (float)err > prjPoints.rows * projectErr )
{
ts->printf( CvTS::LOG, "bad accuracy of project() (real = %f, permissible = %f)",
(float)err/(float)prjPoints.rows, projectErr );
code = CvTS::FAIL_BAD_ACCURACY;
}
// check backProject
Mat points1 = pca.backProject( prjPoints );
err = 0;
for( int i = 0; i < points.rows; i++ )
{
if( fabs(points1.at<float>(i,0) - mean.at<float>(0,0)) > 0.15 ||
fabs(points1.at<float>(i,1) - points.at<float>(i,1)) > 0.05 ||
fabs(points1.at<float>(i,2) - mean.at<float>(0,2)) > 0.15 )
err++;
}
float backProjectErr = 0.05f;
if( (float)err > prjPoints.rows*backProjectErr )
{
ts->printf( CvTS::LOG, "bad accuracy of backProject() (real = %f, permissible = %f)",
(float)err/(float)prjPoints.rows, backProjectErr );
code = CvTS::FAIL_BAD_ACCURACY;
}
CvRNG *oldRng = ts->get_rng(); // set ts->rng seed
*oldRng = rng.state;
ts->set_failed_test_info( code );
}
#else
void CV_PCATest::run( int )
{
int code = CvTS::OK;
double diffPrjEps, diffBackPrjEps,
prjEps, backPrjEps,
evalEps, evecEps;
int maxComponents = 100;
Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
RNG rng = *ts->get_rng();
rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA;
// 1. check C++ PCA & ROW
Mat rPrjTestPoints = rPCA.project( rTestPoints );
Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints );
Mat avg(1, sz.width, CV_32FC1 );
reduce( rPoints, avg, 0, CV_REDUCE_AVG );
Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec;
Q = Qt * Q;
Q = Q /(float)rPoints.rows;
eigen( Q, eval, evec );
/*SVD svd(Q);
evec = svd.vt;
eval = svd.w;*/
Mat subEval( maxComponents, 1, eval.type(), eval.data ),
subEvec( maxComponents, evec.cols, evec.type(), evec.data );
#ifdef CHECK_C
Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t();
CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints;
#endif
// check eigen()
double eigenEps = 1e-6;
double err;
for(int i = 0; i < Q.rows; i++ )
{
Mat v = evec.row(i).t();
Mat Qv = Q * v;
Mat lv = eval.at<float>(i,0) * v;
err = norm( Qv, lv );
if( err > eigenEps )
{
ts->printf( CvTS::LOG, "bad accuracy of eigen(); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
}
// check pca eigenvalues
evalEps = 1e-6, evecEps = 1;
err = norm( rPCA.eigenvalues, subEval );
if( err > evalEps )
{
ts->printf( CvTS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
// check pca eigenvectors
err = norm( rPCA.eigenvectors, subEvec, CV_RELATIVE_L2 );
if( err > evecEps )
{
ts->printf( CvTS::LOG, "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
prjEps = 1.265, backPrjEps = 1.265;
for( int i = 0; i < rTestPoints.rows; i++ )
{
// check pca project
Mat subEvec_t = subEvec.t();
Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
err = norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2);
if( err > prjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
// check pca backProject
Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
err = norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 );
if( err > backPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
}
// 2. check C++ PCA & COL
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
diffPrjEps = 1, diffBackPrjEps = 1;
err = norm(cPCA.project(rTestPoints.t()), rPrjTestPoints.t(), CV_RELATIVE_L2 );
if( err > diffPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
err = norm(cPCA.backProject(rPrjTestPoints.t()), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
if( err > diffBackPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
#ifdef CHECK_C
// 3. check C PCA & ROW
_points = rPoints;
_testPoints = rTestPoints;
_avg = avg;
_eval = eval;
_evec = evec;
prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() );
backPrjTestPoints.create(rPoints.size(), rPoints.type() );
_prjTestPoints = prjTestPoints;
_backPrjTestPoints = backPrjTestPoints;
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW );
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
err = norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2);
if( err > diffPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
err = norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2);
if( err > diffBackPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
// 3. check C PCA & COL
_points = cPoints;
_testPoints = cTestPoints;
avg = avg.t(); _avg = avg;
eval = eval.t(); _eval = eval;
evec = evec.t(); _evec = evec;
prjTestPoints = prjTestPoints.t(); _prjTestPoints = prjTestPoints;
backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = backPrjTestPoints;
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL );
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
err = norm(prjTestPoints, rPrjTestPoints.t(), CV_RELATIVE_L2 );
if( err > diffPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
err = norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2);
if( err > diffBackPrjEps )
{
ts->printf( CvTS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
code = CvTS::FAIL_BAD_ACCURACY;
goto exit_func;
}
#endif
exit_func:
CvRNG* _rng = ts->get_rng();
*_rng = rng.state;
ts->set_failed_test_info( code );
}
#endif
CV_PCATest pca_test;