210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Gold implementation
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     template <typename T, template <typename> class Interpolator>
 | |
|     void resizeImpl(const cv::Mat& src, cv::Mat& dst, double fx, double fy)
 | |
|     {
 | |
|         const int cn = src.channels();
 | |
| 
 | |
|         cv::Size dsize(cv::saturate_cast<int>(src.cols * fx), cv::saturate_cast<int>(src.rows * fy));
 | |
| 
 | |
|         dst.create(dsize, src.type());
 | |
| 
 | |
|         float ifx = static_cast<float>(1.0 / fx);
 | |
|         float ify = static_cast<float>(1.0 / fy);
 | |
| 
 | |
|         for (int y = 0; y < dsize.height; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < dsize.width; ++x)
 | |
|             {
 | |
|                 for (int c = 0; c < cn; ++c)
 | |
|                     dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, y * ify, x * ifx, c, cv::BORDER_REPLICATE);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void resizeGold(const cv::Mat& src, cv::Mat& dst, double fx, double fy, int interpolation)
 | |
|     {
 | |
|         typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst, double fx, double fy);
 | |
| 
 | |
|         static const func_t nearest_funcs[] =
 | |
|         {
 | |
|             resizeImpl<unsigned char, NearestInterpolator>,
 | |
|             resizeImpl<signed char, NearestInterpolator>,
 | |
|             resizeImpl<unsigned short, NearestInterpolator>,
 | |
|             resizeImpl<short, NearestInterpolator>,
 | |
|             resizeImpl<int, NearestInterpolator>,
 | |
|             resizeImpl<float, NearestInterpolator>
 | |
|         };
 | |
| 
 | |
| 
 | |
|         static const func_t linear_funcs[] =
 | |
|         {
 | |
|             resizeImpl<unsigned char, LinearInterpolator>,
 | |
|             resizeImpl<signed char, LinearInterpolator>,
 | |
|             resizeImpl<unsigned short, LinearInterpolator>,
 | |
|             resizeImpl<short, LinearInterpolator>,
 | |
|             resizeImpl<int, LinearInterpolator>,
 | |
|             resizeImpl<float, LinearInterpolator>
 | |
|         };
 | |
| 
 | |
|         static const func_t cubic_funcs[] =
 | |
|         {
 | |
|             resizeImpl<unsigned char, CubicInterpolator>,
 | |
|             resizeImpl<signed char, CubicInterpolator>,
 | |
|             resizeImpl<unsigned short, CubicInterpolator>,
 | |
|             resizeImpl<short, CubicInterpolator>,
 | |
|             resizeImpl<int, CubicInterpolator>,
 | |
|             resizeImpl<float, CubicInterpolator>
 | |
|         };
 | |
| 
 | |
|         static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
 | |
| 
 | |
|         funcs[interpolation][src.depth()](src, dst, fx, fy);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Test
 | |
| 
 | |
| PARAM_TEST_CASE(Resize, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpolation, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     double coeff;
 | |
|     int interpolation;
 | |
|     int type;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         coeff = GET_PARAM(3);
 | |
|         interpolation = GET_PARAM(4);
 | |
|         useRoi = GET_PARAM(5);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(Resize, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
| 
 | |
|     cv::gpu::GpuMat dst = createMat(cv::Size(cv::saturate_cast<int>(src.cols * coeff), cv::saturate_cast<int>(src.rows * coeff)), type, useRoi);
 | |
|     cv::gpu::resize(loadMat(src, useRoi), dst, cv::Size(), coeff, coeff, interpolation);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     resizeGold(src, dst_gold, coeff, coeff, interpolation);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-2 : 1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Resize, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     testing::Values(0.3, 0.5, 1.5, 2.0),
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| /////////////////
 | |
| 
 | |
| PARAM_TEST_CASE(ResizeSameAsHost, cv::gpu::DeviceInfo, cv::Size, MatType, double, Interpolation, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     double coeff;
 | |
|     int interpolation;
 | |
|     int type;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         coeff = GET_PARAM(3);
 | |
|         interpolation = GET_PARAM(4);
 | |
|         useRoi = GET_PARAM(5);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| // downscaling only: used for classifiers
 | |
| GPU_TEST_P(ResizeSameAsHost, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
| 
 | |
|     cv::gpu::GpuMat dst = createMat(cv::Size(cv::saturate_cast<int>(src.cols * coeff), cv::saturate_cast<int>(src.rows * coeff)), type, useRoi);
 | |
|     cv::gpu::resize(loadMat(src, useRoi), dst, cv::Size(), coeff, coeff, interpolation);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::resize(src, dst_gold, cv::Size(), coeff, coeff, interpolation);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-2 : 1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ResizeSameAsHost, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     testing::Values(0.3, 0.5),
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_AREA)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
