428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| //#define DUMP
 | |
| 
 | |
| struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
| #ifdef DUMP
 | |
|     std::ofstream f;
 | |
| #else
 | |
|     std::ifstream f;
 | |
| #endif
 | |
| 
 | |
|     int wins_per_img_x;
 | |
|     int wins_per_img_y;
 | |
|     int blocks_per_win_x;
 | |
|     int blocks_per_win_y;
 | |
|     int block_hist_size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| 
 | |
| #ifdef DUMP
 | |
|     void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
 | |
|     {
 | |
|         f.write((char*)&blockHists.rows, sizeof(blockHists.rows));
 | |
|         f.write((char*)&blockHists.cols, sizeof(blockHists.cols));
 | |
| 
 | |
|         for (int i = 0; i < blockHists.rows; ++i)
 | |
|         {
 | |
|             for (int j = 0; j < blockHists.cols; ++j)
 | |
|             {
 | |
|                 float val = blockHists.at<float>(i, j);
 | |
|                 f.write((char*)&val, sizeof(val));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int nlocations = locations.size();
 | |
|         f.write((char*)&nlocations, sizeof(nlocations));
 | |
| 
 | |
|         for (int i = 0; i < locations.size(); ++i)
 | |
|             f.write((char*)&locations[i], sizeof(locations[i]));
 | |
|     }
 | |
| #else
 | |
|     void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
 | |
|     {
 | |
|         int rows, cols;
 | |
|         f.read((char*)&rows, sizeof(rows));
 | |
|         f.read((char*)&cols, sizeof(cols));
 | |
|         ASSERT_EQ(rows, blockHists.rows);
 | |
|         ASSERT_EQ(cols, blockHists.cols);
 | |
| 
 | |
|         for (int i = 0; i < blockHists.rows; ++i)
 | |
|         {
 | |
|             for (int j = 0; j < blockHists.cols; ++j)
 | |
|             {
 | |
|                 float val;
 | |
|                 f.read((char*)&val, sizeof(val));
 | |
|                 ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int nlocations;
 | |
|         f.read((char*)&nlocations, sizeof(nlocations));
 | |
|         ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
 | |
| 
 | |
|         for (int i = 0; i < nlocations; ++i)
 | |
|         {
 | |
|             cv::Point location;
 | |
|             f.read((char*)&location, sizeof(location));
 | |
|             ASSERT_EQ(location, locations[i]);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     void testDetect(const cv::Mat& img)
 | |
|     {
 | |
|         gamma_correction = false;
 | |
|         setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
 | |
| 
 | |
|         std::vector<cv::Point> locations;
 | |
| 
 | |
|         // Test detect
 | |
|         detect(loadMat(img), locations, 0);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(cv::Mat(block_hists), locations);
 | |
| #else
 | |
|         compare(cv::Mat(block_hists), locations);
 | |
| #endif
 | |
| 
 | |
|         // Test detect on smaller image
 | |
|         cv::Mat img2;
 | |
|         cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
 | |
|         detect(loadMat(img2), locations, 0);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(cv::Mat(block_hists), locations);
 | |
| #else
 | |
|         compare(cv::Mat(block_hists), locations);
 | |
| #endif
 | |
| 
 | |
|         // Test detect on greater image
 | |
|         cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
 | |
|         detect(loadMat(img2), locations, 0);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(cv::Mat(block_hists), locations);
 | |
| #else
 | |
|         compare(cv::Mat(block_hists), locations);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // Does not compare border value, as interpolation leads to delta
 | |
|     void compare_inner_parts(cv::Mat d1, cv::Mat d2)
 | |
|     {
 | |
|         for (int i = 1; i < blocks_per_win_y - 1; ++i)
 | |
|             for (int j = 1; j < blocks_per_win_x - 1; ++j)
 | |
|                 for (int k = 0; k < block_hist_size; ++k)
 | |
|                 {
 | |
|                     float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
 | |
|                     float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
 | |
|                     ASSERT_FLOAT_EQ(a, b);
 | |
|                 }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // desabled while resize does not fixed
 | |
| GPU_TEST_P(HOG, DISABLED_Detect)
 | |
| {
 | |
|     cv::Mat img_rgb = readImage("hog/road.png");
 | |
|     ASSERT_FALSE(img_rgb.empty());
 | |
| 
 | |
| #ifdef DUMP
 | |
|     f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
 | |
|     ASSERT_TRUE(f.is_open());
 | |
| #else
 | |
|     f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
 | |
|     ASSERT_TRUE(f.is_open());
 | |
| #endif
 | |
| 
 | |
|     // Test on color image
 | |
|     cv::Mat img;
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     testDetect(img);
 | |
| 
 | |
|     // Test on gray image
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
 | |
|     testDetect(img);
 | |
| 
 | |
|     f.close();
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(HOG, GetDescriptors)
 | |
| {
 | |
|     // Load image (e.g. train data, composed from windows)
 | |
|     cv::Mat img_rgb = readImage("hog/train_data.png");
 | |
|     ASSERT_FALSE(img_rgb.empty());
 | |
| 
 | |
|     // Convert to C4
 | |
|     cv::Mat img;
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
| 
 | |
|     cv::gpu::GpuMat d_img(img);
 | |
| 
 | |
|     // Convert train images into feature vectors (train table)
 | |
|     cv::gpu::GpuMat descriptors, descriptors_by_cols;
 | |
|     getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
 | |
|     getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
 | |
| 
 | |
|     // Check size of the result train table
 | |
|     wins_per_img_x = 3;
 | |
|     wins_per_img_y = 2;
 | |
|     blocks_per_win_x = 7;
 | |
|     blocks_per_win_y = 15;
 | |
|     block_hist_size = 36;
 | |
|     cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
 | |
|                                             wins_per_img_x * wins_per_img_y);
 | |
|     ASSERT_EQ(descr_size_expected, descriptors.size());
 | |
| 
 | |
|     // Check both formats of output descriptors are handled correctly
 | |
|     cv::Mat dr(descriptors);
 | |
|     cv::Mat dc(descriptors_by_cols);
 | |
|     for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
 | |
|     {
 | |
|         const float* l = dr.rowRange(i, i + 1).ptr<float>();
 | |
|         const float* r = dc.rowRange(i, i + 1).ptr<float>();
 | |
|         for (int y = 0; y < blocks_per_win_y; ++y)
 | |
|             for (int x = 0; x < blocks_per_win_x; ++x)
 | |
|                 for (int k = 0; k < block_hist_size; ++k)
 | |
|                     ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
 | |
|                               r[(x * blocks_per_win_y + y) * block_hist_size + k]);
 | |
|     }
 | |
| 
 | |
|     /* Now we want to extract the same feature vectors, but from single images. NOTE: results will
 | |
|     be defferent, due to border values interpolation. Using of many small images is slower, however we
 | |
|     wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
 | |
|     works good, it can be checked in the gpu_hog sample */
 | |
| 
 | |
|     img_rgb = readImage("hog/positive1.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     // Everything is fine with interpolation for left top subimage
 | |
|     ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
 | |
| 
 | |
|     img_rgb = readImage("hog/positive2.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2)));
 | |
| 
 | |
|     img_rgb = readImage("hog/negative1.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3)));
 | |
| 
 | |
|     img_rgb = readImage("hog/negative2.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4)));
 | |
| 
 | |
|     img_rgb = readImage("hog/positive3.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5)));
 | |
| 
 | |
|     img_rgb = readImage("hog/negative3.png");
 | |
|     ASSERT_TRUE(!img_rgb.empty());
 | |
|     cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
 | |
|     computeBlockHistograms(cv::gpu::GpuMat(img));
 | |
|     compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6)));
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
 | |
| 
 | |
| //============== caltech hog tests =====================//
 | |
| 
 | |
| struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Mat img;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
 | |
|         ASSERT_FALSE(img.empty());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(CalTech, HOG)
 | |
| {
 | |
|     cv::gpu::GpuMat d_img(img);
 | |
|     cv::Mat markedImage(img.clone());
 | |
| 
 | |
|     cv::gpu::HOGDescriptor d_hog;
 | |
|     d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
 | |
|     d_hog.nlevels = d_hog.nlevels + 32;
 | |
| 
 | |
|     std::vector<cv::Rect> found_locations;
 | |
|     d_hog.detectMultiScale(d_img, found_locations);
 | |
| 
 | |
| #if defined (LOG_CASCADE_STATISTIC)
 | |
|     for (int i = 0; i < (int)found_locations.size(); i++)
 | |
|     {
 | |
|         cv::Rect r = found_locations[i];
 | |
| 
 | |
|         std::cout << r.x << " " << r.y  << " " << r.width << " " << r.height << std::endl;
 | |
|         cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
 | |
|     }
 | |
| 
 | |
|     cv::imshow("Res", markedImage); cv::waitKey();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES,
 | |
|     ::testing::Values<std::string>("caltech/image_00000009_0.png", "caltech/image_00000032_0.png",
 | |
|         "caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png",
 | |
|         "caltech/image_00000527_0.png", "caltech/image_00000574_0.png")));
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| /// LBP classifier
 | |
| 
 | |
| PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(LBP_Read_classifier, Accuracy)
 | |
| {
 | |
|     cv::gpu::CascadeClassifier_GPU classifier;
 | |
|     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
 | |
|     ASSERT_TRUE(classifier.load(classifierXmlPath));
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier,
 | |
|                         testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
 | |
| 
 | |
| 
 | |
| PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(LBP_classify, Accuracy)
 | |
| {
 | |
|     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
 | |
|     std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
 | |
| 
 | |
|     cv::CascadeClassifier cpuClassifier(classifierXmlPath);
 | |
|     ASSERT_FALSE(cpuClassifier.empty());
 | |
| 
 | |
|     cv::Mat image = cv::imread(imagePath);
 | |
|     image = image.colRange(0, image.cols/2);
 | |
|     cv::Mat grey;
 | |
|     cvtColor(image, grey, CV_BGR2GRAY);
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     std::vector<cv::Rect> rects;
 | |
|     cpuClassifier.detectMultiScale(grey, rects);
 | |
|     cv::Mat markedImage = image.clone();
 | |
| 
 | |
|     std::vector<cv::Rect>::iterator it = rects.begin();
 | |
|     for (; it != rects.end(); ++it)
 | |
|         cv::rectangle(markedImage, *it, CV_RGB(0, 0, 255));
 | |
| 
 | |
|     cv::gpu::CascadeClassifier_GPU gpuClassifier;
 | |
|     ASSERT_TRUE(gpuClassifier.load(classifierXmlPath));
 | |
| 
 | |
|     cv::gpu::GpuMat gpu_rects;
 | |
|     cv::gpu::GpuMat tested(grey);
 | |
|     int count = gpuClassifier.detectMultiScale(tested, gpu_rects);
 | |
| 
 | |
| #if defined (LOG_CASCADE_STATISTIC)
 | |
|     cv::Mat downloaded(gpu_rects);
 | |
|     const cv::Rect* faces = downloaded.ptr<cv::Rect>();
 | |
|     for (int i = 0; i < count; i++)
 | |
|     {
 | |
|         cv::Rect r = faces[i];
 | |
| 
 | |
|         std::cout << r.x << " " << r.y  << " " << r.width << " " << r.height << std::endl;
 | |
|         cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if defined (LOG_CASCADE_STATISTIC)
 | |
|     cv::imshow("Res", markedImage); cv::waitKey();
 | |
| #endif
 | |
|     (void)count;
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify,
 | |
|                         testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
