opencv/modules/gpu/test/test_arithm.cpp
Vladislav Vinogradov ade7394e77 refactored and fixed bugs in gpu warp functions (remap, resize, warpAffine, warpPerspective)
wrote more complicated tests for them
implemented own version of warpAffine and warpPerspective for different border interpolation types
refactored some gpu tests
2012-03-14 15:54:17 +00:00

1691 lines
44 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
using namespace testing;
PARAM_TEST_CASE(ArithmTestBase, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat1;
cv::Mat mat2;
cv::Scalar val;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, type, 5, 16, false);
mat2 = randomMat(rng, size, type, 5, 16, false);
val = cv::Scalar(rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3));
}
};
////////////////////////////////////////////////////////////////////////////////
// add
struct Add : ArithmTestBase {};
TEST_P(Add, Array)
{
cv::Mat dst_gold;
cv::add(mat1, mat2, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Add, Scalar)
{
cv::Mat dst_gold;
cv::add(mat1, val, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::add(loadMat(mat1, useRoi), val, gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4,
CV_32SC1, CV_32SC2, CV_32SC3, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// subtract
struct Subtract : ArithmTestBase {};
TEST_P(Subtract, Array)
{
cv::Mat dst_gold;
cv::subtract(mat1, mat2, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Subtract, Scalar)
{
cv::Mat dst_gold;
cv::subtract(mat1, val, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::subtract(loadMat(mat1, useRoi), val, gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Subtract, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4,
CV_32SC1, CV_32SC2, CV_32SC3, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// multiply
struct Multiply : ArithmTestBase {};
TEST_P(Multiply, Array)
{
cv::Mat dst_gold;
cv::multiply(mat1, mat2, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Multiply, Scalar)
{
cv::Mat dst_gold;
cv::multiply(mat1, val, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::multiply(loadMat(mat1, useRoi), val, gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Multiply, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC3, CV_16SC4,
CV_32SC1, CV_32SC3, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// divide
struct Divide : ArithmTestBase {};
TEST_P(Divide, Array)
{
cv::Mat dst_gold;
cv::divide(mat1, mat2, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, mat1.depth() == CV_32F ? 1e-5 : 1);
}
TEST_P(Divide, Scalar)
{
cv::Mat dst_gold;
cv::divide(mat1, val, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::divide(loadMat(mat1, useRoi), val, gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, mat1.depth() == CV_32F ? 1e-5 : 1);
}
INSTANTIATE_TEST_CASE_P(Arithm, Divide, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC3, CV_16SC4,
CV_32SC1, CV_32SC3, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// transpose
struct Transpose : ArithmTestBase {};
TEST_P(Transpose, Accuracy)
{
cv::Mat dst_gold;
cv::transpose(mat1, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::transpose(loadMat(mat1, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC4, CV_8SC1, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_32FC1, CV_32FC2, CV_64FC1),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// absdiff
struct Absdiff : ArithmTestBase {};
TEST_P(Absdiff, Array)
{
cv::Mat dst_gold;
cv::absdiff(mat1, mat2, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::absdiff(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Absdiff, Scalar)
{
cv::Mat dst_gold;
cv::absdiff(mat1, val, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::absdiff(loadMat(mat1, useRoi), val, gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Absdiff, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_16UC1, CV_32SC1, CV_32FC1),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// abs
struct Abs : ArithmTestBase {};
TEST_P(Abs, Array)
{
cv::Mat dst_gold = cv::abs(mat1);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::abs(loadMat(mat1, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Abs, Combine(
ALL_DEVICES,
Values(CV_16SC1, CV_32FC1),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// Sqr
struct Sqr : ArithmTestBase {};
TEST_P(Sqr, Array)
{
cv::Mat dst_gold;
cv::multiply(mat1, mat1, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::sqr(loadMat(mat1, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Sqr, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_16UC1, CV_16SC1, CV_32FC1),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// Sqrt
struct Sqrt : ArithmTestBase {};
TEST_P(Sqrt, Array)
{
cv::Mat dst_gold;
cv::sqrt(mat1, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::sqrt(loadMat(mat1, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Sqrt, Combine(
ALL_DEVICES,
Values(MatType(CV_32FC1)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// compare
PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, MatType, CmpCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
int cmp_code;
bool useRoi;
cv::Size size;
cv::Mat mat1, mat2;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
cmp_code = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, type, 1, 16, false);
mat2 = randomMat(rng, size, type, 1, 16, false);
cv::compare(mat1, mat2, dst_gold, cmp_code);
}
};
TEST_P(Compare, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::compare(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes, cmp_code);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Compare, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_16UC1, CV_32SC1),
Values((int) cv::CMP_EQ, (int) cv::CMP_GT, (int) cv::CMP_GE, (int) cv::CMP_LT, (int) cv::CMP_LE, (int) cv::CMP_NE),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// meanStdDev
PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Scalar mean_gold;
cv::Scalar stddev_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, CV_8UC1, 1, 255, false);
cv::meanStdDev(mat, mean_gold, stddev_gold);
}
};
TEST_P(MeanStdDev, Accuracy)
{
cv::Scalar mean;
cv::Scalar stddev;
cv::gpu::meanStdDev(loadMat(mat, useRoi), mean, stddev);
EXPECT_NEAR(mean_gold[0], mean[0], 1e-5);
EXPECT_NEAR(mean_gold[1], mean[1], 1e-5);
EXPECT_NEAR(mean_gold[2], mean[2], 1e-5);
EXPECT_NEAR(mean_gold[3], mean[3], 1e-5);
EXPECT_NEAR(stddev_gold[0], stddev[0], 1e-5);
EXPECT_NEAR(stddev_gold[1], stddev[1], 1e-5);
EXPECT_NEAR(stddev_gold[2], stddev[2], 1e-5);
EXPECT_NEAR(stddev_gold[3], stddev[3], 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, MeanStdDev, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// normDiff
PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int normCode;
bool useRoi;
cv::Size size;
cv::Mat mat1, mat2;
double norm_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
normCode = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, CV_8UC1, 1, 255, false);
mat2 = randomMat(rng, size, CV_8UC1, 1, 255, false);
norm_gold = cv::norm(mat1, mat2, normCode);
}
};
TEST_P(NormDiff, Accuracy)
{
double norm = cv::gpu::norm(loadMat(mat1, useRoi), loadMat(mat2, useRoi), normCode);
EXPECT_NEAR(norm_gold, norm, 1e-6);
}
INSTANTIATE_TEST_CASE_P(Arithm, NormDiff, Combine(
ALL_DEVICES,
Values((int) cv::NORM_INF, (int) cv::NORM_L1, (int) cv::NORM_L2),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// flip
PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, MatType, FlipCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
int flip_code;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
flip_code = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, type, 1, 255, false);
cv::flip(mat, dst_gold, flip_code);
}
};
TEST_P(Flip, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::flip(loadMat(mat, useRoi), gpu_res, flip_code);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Flip, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values((int)FLIP_BOTH, (int)FLIP_X, (int)FLIP_Y),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// LUT
PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat lut;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, type, 1, 255, false);
lut = randomMat(rng, cv::Size(256, 1), CV_8UC1, 100, 200, false);
cv::LUT(mat, lut, dst_gold);
}
};
TEST_P(LUT, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::LUT(loadMat(mat, useRoi), lut, gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, LUT, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// exp
PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, CV_32FC1, -10.0, 2.0, false);
cv::exp(mat, dst_gold);
}
};
TEST_P(Exp, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::exp(loadMat(mat, useRoi), gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// pow
PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
double power;
cv::Size size;
cv::Mat mat;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, type, 0.0, 100.0, false);
if (mat.depth() == CV_32F)
power = rng.uniform(1.2f, 3.f);
else
{
int ipower = rng.uniform(2, 8);
power = (float)ipower;
}
cv::pow(mat, power, dst_gold);
}
};
TEST_P(Pow, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::pow(loadMat(mat, useRoi), power, gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 2);
}
INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine(
ALL_DEVICES,
Values(CV_32F, CV_32FC3),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// log
PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
cv::log(mat, dst_gold);
}
};
TEST_P(Log, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::log(loadMat(mat, useRoi), gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// magnitude
PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat1, mat2;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
cv::magnitude(mat1, mat2, dst_gold);
}
};
TEST_P(Magnitude, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::magnitude(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-4);
}
INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// phase
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat1, mat2;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
cv::phase(mat1, mat2, dst_gold);
}
};
TEST_P(Phase, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpu_res;
cv::gpu::phase(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res);
gpu_res.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-3);
}
INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// cartToPolar
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mat1, mat2;
cv::Mat mag_gold;
cv::Mat angle_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false);
mat2 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false);
cv::cartToPolar(mat1, mat2, mag_gold, angle_gold);
}
};
TEST_P(CartToPolar, Accuracy)
{
cv::Mat mag, angle;
cv::gpu::GpuMat gpuMag;
cv::gpu::GpuMat gpuAngle;
cv::gpu::cartToPolar(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuMag, gpuAngle);
gpuMag.download(mag);
gpuAngle.download(angle);
EXPECT_MAT_NEAR(mag_gold, mag, 1e-4);
EXPECT_MAT_NEAR(angle_gold, angle, 1e-3);
}
INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// polarToCart
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat mag;
cv::Mat angle;
cv::Mat x_gold;
cv::Mat y_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mag = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false);
angle = randomMat(rng, size, CV_32FC1, 0.0, 2.0 * CV_PI, false);
cv::polarToCart(mag, angle, x_gold, y_gold);
}
};
TEST_P(PolarToCart, Accuracy)
{
cv::Mat x, y;
cv::gpu::GpuMat gpuX;
cv::gpu::GpuMat gpuY;
cv::gpu::polarToCart(loadMat(mag, useRoi), loadMat(angle, useRoi), gpuX, gpuY);
gpuX.download(x);
gpuY.download(y);
EXPECT_MAT_NEAR(x_gold, x, 1e-4);
EXPECT_MAT_NEAR(y_gold, y, 1e-4);
}
INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// minMax
PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat mask;
double minVal_gold;
double maxVal_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, type, 0.0, 127.0, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
if (type != CV_8S)
{
cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, 0, 0, mask);
}
else
{
// OpenCV's minMaxLoc doesn't support CV_8S type
minVal_gold = std::numeric_limits<double>::max();
maxVal_gold = -std::numeric_limits<double>::max();
for (int i = 0; i < mat.rows; ++i)
{
const signed char* mat_row = mat.ptr<signed char>(i);
const unsigned char* mask_row = mask.ptr<unsigned char>(i);
for (int j = 0; j < mat.cols; ++j)
{
if (mask_row[j])
{
signed char val = mat_row[j];
if (val < minVal_gold) minVal_gold = val;
if (val > maxVal_gold) maxVal_gold = val;
}
}
}
}
}
};
TEST_P(MinMax, Accuracy)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
double minVal, maxVal;
cv::gpu::minMax(loadMat(mat, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
}
INSTANTIATE_TEST_CASE_P(Arithm, MinMax, Combine(
ALL_DEVICES,
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// minMaxLoc
PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat;
cv::Mat mask;
double minVal_gold;
double maxVal_gold;
cv::Point minLoc_gold;
cv::Point maxLoc_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, type, 0.0, 127.0, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
if (type != CV_8S)
{
cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
}
else
{
// OpenCV's minMaxLoc doesn't support CV_8S type
minVal_gold = std::numeric_limits<double>::max();
maxVal_gold = -std::numeric_limits<double>::max();
for (int i = 0; i < mat.rows; ++i)
{
const signed char* mat_row = mat.ptr<signed char>(i);
const unsigned char* mask_row = mask.ptr<unsigned char>(i);
for (int j = 0; j < mat.cols; ++j)
{
if (mask_row[j])
{
signed char val = mat_row[j];
if (val < minVal_gold) { minVal_gold = val; minLoc_gold = cv::Point(j, i); }
if (val > maxVal_gold) { maxVal_gold = val; maxLoc_gold = cv::Point(j, i); }
}
}
}
}
}
};
TEST_P(MinMaxLoc, Accuracy)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(mat, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
int cmpMinVals = memcmp(mat.data + minLoc_gold.y * mat.step + minLoc_gold.x * mat.elemSize(),
mat.data + minLoc.y * mat.step + minLoc.x * mat.elemSize(),
mat.elemSize());
int cmpMaxVals = memcmp(mat.data + maxLoc_gold.y * mat.step + maxLoc_gold.x * mat.elemSize(),
mat.data + maxLoc.y * mat.step + maxLoc.x * mat.elemSize(),
mat.elemSize());
EXPECT_EQ(0, cmpMinVals);
EXPECT_EQ(0, cmpMaxVals);
}
INSTANTIATE_TEST_CASE_P(Arithm, MinMaxLoc, Combine(
ALL_DEVICES,
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////
// countNonZero
PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat;
int n_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
cv::Mat matBase = randomMat(rng, size, CV_8U, 0.0, 1.0, false);
matBase.convertTo(mat, type);
n_gold = cv::countNonZero(mat);
}
};
TEST_P(CountNonZero, Accuracy)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
int n = cv::gpu::countNonZero(loadMat(mat, useRoi));
ASSERT_EQ(n_gold, n);
}
INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine(
ALL_DEVICES,
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// sum
PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat = randomMat(rng, size, CV_8U, 0.0, 10.0, false);
}
};
TEST_P(Sum, Simple)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar sum_gold = cv::sum(mat);
cv::Scalar sum = cv::gpu::sum(loadMat(mat, useRoi));
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5);
}
TEST_P(Sum, Abs)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar sum_gold = cv::norm(mat, cv::NORM_L1);
cv::Scalar sum = cv::gpu::absSum(loadMat(mat, useRoi));
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5);
}
TEST_P(Sum, Sqr)
{
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat sqrmat;
multiply(mat, mat, sqrmat);
cv::Scalar sum_gold = sum(sqrmat);
cv::Scalar sum = cv::gpu::sqrSum(loadMat(mat, useRoi));
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5);
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5);
}
INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine(
ALL_DEVICES,
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// bitwise
PARAM_TEST_CASE(Bitwise, cv::gpu::DeviceInfo, MatType)
{
cv::gpu::DeviceInfo devInfo;
int type;
cv::Size size;
cv::Mat mat1;
cv::Mat mat2;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat1.create(size, type);
mat2.create(size, type);
for (int i = 0; i < mat1.rows; ++i)
{
cv::Mat row1(1, static_cast<int>(mat1.cols * mat1.elemSize()), CV_8U, (void*)mat1.ptr(i));
rng.fill(row1, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255));
cv::Mat row2(1, static_cast<int>(mat2.cols * mat2.elemSize()), CV_8U, (void*)mat2.ptr(i));
rng.fill(row2, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255));
}
}
};
TEST_P(Bitwise, Not)
{
if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold = ~mat1;
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_not(loadMat(mat1), dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Bitwise, Or)
{
if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold = mat1 | mat2;
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_or(loadMat(mat1), loadMat(mat2), dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Bitwise, And)
{
if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold = mat1 & mat2;
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_and(loadMat(mat1), loadMat(mat2), dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Bitwise, Xor)
{
if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold = mat1 ^ mat2;
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_xor(loadMat(mat1), loadMat(mat2), dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, Bitwise, Combine(
ALL_DEVICES,
ALL_TYPES));
PARAM_TEST_CASE(BitwiseScalar, cv::gpu::DeviceInfo, MatType)
{
cv::gpu::DeviceInfo devInfo;
int type;
cv::Size size;
cv::Mat mat;
cv::Scalar sc;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
mat.create(size, type);
for (int i = 0; i < mat.rows; ++i)
{
cv::Mat row(1, static_cast<int>(mat.cols * mat.elemSize()), CV_8U, (void*)mat.ptr(i));
rng.fill(row, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255));
}
sc = cv::Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
}
};
TEST_P(BitwiseScalar, Or)
{
cv::Mat dst_gold;
cv::bitwise_or(mat, sc, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_or(loadMat(mat), sc, dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(BitwiseScalar, And)
{
cv::Mat dst_gold;
cv::bitwise_and(mat, sc, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_and(loadMat(mat), sc, dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(BitwiseScalar, Xor)
{
cv::Mat dst_gold;
cv::bitwise_xor(mat, sc, dst_gold);
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::bitwise_xor(loadMat(mat), sc, dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(Arithm, BitwiseScalar, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32SC1, CV_32SC3, CV_32SC4)));
//////////////////////////////////////////////////////////////////////////////
// addWeighted
PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, MatType, MatType, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type1;
int type2;
int dtype;
bool useRoi;
cv::Size size;
cv::Mat src1;
cv::Mat src2;
double alpha;
double beta;
double gamma;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type1 = GET_PARAM(1);
type2 = GET_PARAM(2);
dtype = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
src1 = randomMat(rng, size, type1, 0.0, 255.0, false);
src2 = randomMat(rng, size, type2, 0.0, 255.0, false);
alpha = rng.uniform(-10.0, 10.0);
beta = rng.uniform(-10.0, 10.0);
gamma = rng.uniform(-10.0, 10.0);
cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dtype);
}
};
TEST_P(AddWeighted, Accuracy)
{
if ((src1.depth() == CV_64F || src2.depth() == CV_64F || dst_gold.depth() == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dev_dst, dtype);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, dtype < CV_32F ? 1.0 : 1e-12);
}
INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine(
ALL_DEVICES,
TYPES(CV_8U, CV_64F, 1, 1),
TYPES(CV_8U, CV_64F, 1, 1),
TYPES(CV_8U, CV_64F, 1, 1),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// reduce
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
int dim;
int reduceOp;
bool useRoi;
cv::Size size;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
dim = GET_PARAM(2);
reduceOp = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
src = randomMat(rng, size, type, 0.0, 255.0, false);
cv::reduce(src, dst_gold, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type));
if (dim == 1)
{
dst_gold.cols = dst_gold.rows;
dst_gold.rows = 1;
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
}
}
};
TEST_P(Reduce, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::reduce(loadMat(src, useRoi), dev_dst, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type));
dev_dst.download(dst);
double norm = reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? 1e-1 : 0.0;
EXPECT_MAT_NEAR(dst_gold, dst, norm);
}
INSTANTIATE_TEST_CASE_P(Arithm, Reduce, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(0, 1),
Values((int)CV_REDUCE_SUM, (int)CV_REDUCE_AVG, (int)CV_REDUCE_MAX, (int)CV_REDUCE_MIN),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// gemm
PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, MatType, GemmFlags, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
int flags;
bool useRoi;
int size;
cv::Mat src1;
cv::Mat src2;
cv::Mat src3;
double alpha;
double beta;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
flags = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = rng.uniform(100, 200);
src1 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false);
src2 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false);
src3 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false);
alpha = rng.uniform(-10.0, 10.0);
beta = rng.uniform(-10.0, 10.0);
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
}
};
TEST_P(GEMM, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dev_dst, flags);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-1);
}
INSTANTIATE_TEST_CASE_P(Arithm, GEMM, Combine(
ALL_DEVICES,
Values(CV_32FC1, CV_32FC2),
Values(0, (int) cv::GEMM_1_T, (int) cv::GEMM_2_T, (int) cv::GEMM_3_T),
WHOLE_SUBMAT));
#endif // HAVE_CUDA