523 lines
19 KiB
C++
523 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
|
*
|
|
* Prepared and integrated by Andrew B. Godbehere.
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <limits>
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class BackgroundSubtractorGMGImpl : public BackgroundSubtractorGMG
|
|
{
|
|
public:
|
|
BackgroundSubtractorGMGImpl()
|
|
{
|
|
/*
|
|
* Default Parameter Values. Override with algorithm "set" method.
|
|
*/
|
|
maxFeatures = 64;
|
|
learningRate = 0.025;
|
|
numInitializationFrames = 120;
|
|
quantizationLevels = 16;
|
|
backgroundPrior = 0.8;
|
|
decisionThreshold = 0.8;
|
|
smoothingRadius = 7;
|
|
updateBackgroundModel = true;
|
|
minVal_ = maxVal_ = 0;
|
|
name_ = "BackgroundSubtractor.GMG";
|
|
}
|
|
|
|
~BackgroundSubtractorGMGImpl()
|
|
{
|
|
}
|
|
|
|
virtual AlgorithmInfo* info() const { return 0; }
|
|
|
|
/**
|
|
* Validate parameters and set up data structures for appropriate image size.
|
|
* Must call before running on data.
|
|
* @param frameSize input frame size
|
|
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
|
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
|
*/
|
|
void initialize(Size frameSize, double minVal, double maxVal);
|
|
|
|
/**
|
|
* Performs single-frame background subtraction and builds up a statistical background image
|
|
* model.
|
|
* @param image Input image
|
|
* @param fgmask Output mask image representing foreground and background pixels
|
|
*/
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1.0);
|
|
|
|
/**
|
|
* Releases all inner buffers.
|
|
*/
|
|
void release();
|
|
|
|
virtual int getMaxFeatures() const { return maxFeatures; }
|
|
virtual void setMaxFeatures(int _maxFeatures) { maxFeatures = _maxFeatures; }
|
|
|
|
virtual double getDefaultLearningRate() const { return learningRate; }
|
|
virtual void setDefaultLearningRate(double lr) { learningRate = lr; }
|
|
|
|
virtual int getNumFrames() const { return numInitializationFrames; }
|
|
virtual void setNumFrames(int nframes) { numInitializationFrames = nframes; }
|
|
|
|
virtual int getQuantizationLevels() const { return quantizationLevels; }
|
|
virtual void setQuantizationLevels(int nlevels) { quantizationLevels = nlevels; }
|
|
|
|
virtual double getBackgroundPrior() const { return backgroundPrior; }
|
|
virtual void setBackgroundPrior(double bgprior) { backgroundPrior = bgprior; }
|
|
|
|
virtual int getSmoothingRadius() const { return smoothingRadius; }
|
|
virtual void setSmoothingRadius(int radius) { smoothingRadius = radius; }
|
|
|
|
virtual double getDecisionThreshold() const { return decisionThreshold; }
|
|
virtual void setDecisionThreshold(double thresh) { decisionThreshold = thresh; }
|
|
|
|
virtual bool getUpdateBackgroundModel() const { return updateBackgroundModel; }
|
|
virtual void setUpdateBackgroundModel(bool update) { updateBackgroundModel = update; }
|
|
|
|
virtual double getMinVal() const { return minVal_; }
|
|
virtual void setMinVal(double val) { minVal_ = val; }
|
|
|
|
virtual double getMaxVal() const { return maxVal_; }
|
|
virtual void setMaxVal(double val) { maxVal_ = val; }
|
|
|
|
virtual void getBackgroundImage(OutputArray) const
|
|
{
|
|
CV_Error( Error::StsNotImplemented, "" );
|
|
}
|
|
|
|
virtual void write(FileStorage& fs) const
|
|
{
|
|
fs << "name" << name_
|
|
<< "maxFeatures" << maxFeatures
|
|
<< "defaultLearningRate" << learningRate
|
|
<< "numFrames" << numInitializationFrames
|
|
<< "quantizationLevels" << quantizationLevels
|
|
<< "backgroundPrior" << backgroundPrior
|
|
<< "decisionThreshold" << decisionThreshold
|
|
<< "smoothingRadius" << smoothingRadius
|
|
<< "updateBackgroundModel" << (int)updateBackgroundModel;
|
|
// we do not save minVal_ & maxVal_, since they depend on the image type.
|
|
}
|
|
|
|
virtual void read(const FileNode& fn)
|
|
{
|
|
CV_Assert( (String)fn["name"] == name_ );
|
|
maxFeatures = (int)fn["maxFeatures"];
|
|
learningRate = (double)fn["defaultLearningRate"];
|
|
numInitializationFrames = (int)fn["numFrames"];
|
|
quantizationLevels = (int)fn["quantizationLevels"];
|
|
backgroundPrior = (double)fn["backgroundPrior"];
|
|
smoothingRadius = (int)fn["smoothingRadius"];
|
|
decisionThreshold = (double)fn["decisionThreshold"];
|
|
updateBackgroundModel = (int)fn["updateBackgroundModel"] != 0;
|
|
minVal_ = maxVal_ = 0;
|
|
frameSize_ = Size();
|
|
}
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
int maxFeatures;
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
double learningRate;
|
|
//! Number of frames of video to use to initialize histograms.
|
|
int numInitializationFrames;
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
int quantizationLevels;
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
double backgroundPrior;
|
|
//! Value above which pixel is determined to be FG.
|
|
double decisionThreshold;
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
int smoothingRadius;
|
|
//! Perform background model update
|
|
bool updateBackgroundModel;
|
|
|
|
private:
|
|
double maxVal_;
|
|
double minVal_;
|
|
|
|
Size frameSize_;
|
|
int frameNum_;
|
|
|
|
String name_;
|
|
|
|
Mat_<int> nfeatures_;
|
|
Mat_<unsigned int> colors_;
|
|
Mat_<float> weights_;
|
|
|
|
Mat buf_;
|
|
};
|
|
|
|
|
|
void BackgroundSubtractorGMGImpl::initialize(Size frameSize, double minVal, double maxVal)
|
|
{
|
|
CV_Assert(minVal < maxVal);
|
|
CV_Assert(maxFeatures > 0);
|
|
CV_Assert(learningRate >= 0.0 && learningRate <= 1.0);
|
|
CV_Assert(numInitializationFrames >= 1);
|
|
CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255);
|
|
CV_Assert(backgroundPrior >= 0.0 && backgroundPrior <= 1.0);
|
|
|
|
minVal_ = minVal;
|
|
maxVal_ = maxVal;
|
|
|
|
frameSize_ = frameSize;
|
|
frameNum_ = 0;
|
|
|
|
nfeatures_.create(frameSize_);
|
|
colors_.create(frameSize_.area(), maxFeatures);
|
|
weights_.create(frameSize_.area(), maxFeatures);
|
|
|
|
nfeatures_.setTo(Scalar::all(0));
|
|
}
|
|
|
|
namespace
|
|
{
|
|
float findFeature(unsigned int color, const unsigned int* colors, const float* weights, int nfeatures)
|
|
{
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
{
|
|
if (color == colors[i])
|
|
return weights[i];
|
|
}
|
|
|
|
// not in histogram, so return 0.
|
|
return 0.0f;
|
|
}
|
|
|
|
void normalizeHistogram(float* weights, int nfeatures)
|
|
{
|
|
float total = 0.0f;
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
total += weights[i];
|
|
|
|
if (total != 0.0f)
|
|
{
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
weights[i] /= total;
|
|
}
|
|
}
|
|
|
|
bool insertFeature(unsigned int color, float weight, unsigned int* colors, float* weights, int& nfeatures, int maxFeatures)
|
|
{
|
|
int idx = -1;
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
{
|
|
if (color == colors[i])
|
|
{
|
|
// feature in histogram
|
|
weight += weights[i];
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idx >= 0)
|
|
{
|
|
// move feature to beginning of list
|
|
|
|
::memmove(colors + 1, colors, idx * sizeof(unsigned int));
|
|
::memmove(weights + 1, weights, idx * sizeof(float));
|
|
|
|
colors[0] = color;
|
|
weights[0] = weight;
|
|
}
|
|
else if (nfeatures == maxFeatures)
|
|
{
|
|
// discard oldest feature
|
|
|
|
::memmove(colors + 1, colors, (nfeatures - 1) * sizeof(unsigned int));
|
|
::memmove(weights + 1, weights, (nfeatures - 1) * sizeof(float));
|
|
|
|
colors[0] = color;
|
|
weights[0] = weight;
|
|
}
|
|
else
|
|
{
|
|
colors[nfeatures] = color;
|
|
weights[nfeatures] = weight;
|
|
|
|
++nfeatures;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template <typename T> struct Quantization
|
|
{
|
|
static unsigned int apply(const void* src_, int x, int cn, double minVal, double maxVal, int quantizationLevels)
|
|
{
|
|
const T* src = static_cast<const T*>(src_);
|
|
src += x * cn;
|
|
|
|
unsigned int res = 0;
|
|
for (int i = 0, shift = 0; i < cn; ++i, ++src, shift += 8)
|
|
res |= static_cast<int>((*src - minVal) * quantizationLevels / (maxVal - minVal)) << shift;
|
|
|
|
return res;
|
|
}
|
|
};
|
|
|
|
class GMG_LoopBody : public ParallelLoopBody
|
|
{
|
|
public:
|
|
GMG_LoopBody(const Mat& frame, const Mat& fgmask, const Mat_<int>& nfeatures, const Mat_<unsigned int>& colors, const Mat_<float>& weights,
|
|
int maxFeatures, double learningRate, int numInitializationFrames, int quantizationLevels, double backgroundPrior, double decisionThreshold,
|
|
double maxVal, double minVal, int frameNum, bool updateBackgroundModel) :
|
|
frame_(frame), fgmask_(fgmask), nfeatures_(nfeatures), colors_(colors), weights_(weights),
|
|
maxFeatures_(maxFeatures), learningRate_(learningRate), numInitializationFrames_(numInitializationFrames), quantizationLevels_(quantizationLevels),
|
|
backgroundPrior_(backgroundPrior), decisionThreshold_(decisionThreshold), updateBackgroundModel_(updateBackgroundModel),
|
|
maxVal_(maxVal), minVal_(minVal), frameNum_(frameNum)
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const;
|
|
|
|
private:
|
|
Mat frame_;
|
|
|
|
mutable Mat_<uchar> fgmask_;
|
|
|
|
mutable Mat_<int> nfeatures_;
|
|
mutable Mat_<unsigned int> colors_;
|
|
mutable Mat_<float> weights_;
|
|
|
|
int maxFeatures_;
|
|
double learningRate_;
|
|
int numInitializationFrames_;
|
|
int quantizationLevels_;
|
|
double backgroundPrior_;
|
|
double decisionThreshold_;
|
|
bool updateBackgroundModel_;
|
|
|
|
double maxVal_;
|
|
double minVal_;
|
|
int frameNum_;
|
|
};
|
|
|
|
void GMG_LoopBody::operator() (const Range& range) const
|
|
{
|
|
typedef unsigned int (*func_t)(const void* src_, int x, int cn, double minVal, double maxVal, int quantizationLevels);
|
|
static const func_t funcs[] =
|
|
{
|
|
Quantization<uchar>::apply,
|
|
Quantization<schar>::apply,
|
|
Quantization<ushort>::apply,
|
|
Quantization<short>::apply,
|
|
Quantization<int>::apply,
|
|
Quantization<float>::apply,
|
|
Quantization<double>::apply
|
|
};
|
|
|
|
const func_t func = funcs[frame_.depth()];
|
|
CV_Assert(func != 0);
|
|
|
|
const int cn = frame_.channels();
|
|
|
|
for (int y = range.start, featureIdx = y * frame_.cols; y < range.end; ++y)
|
|
{
|
|
const uchar* frame_row = frame_.ptr(y);
|
|
int* nfeatures_row = nfeatures_[y];
|
|
uchar* fgmask_row = fgmask_[y];
|
|
|
|
for (int x = 0; x < frame_.cols; ++x, ++featureIdx)
|
|
{
|
|
int nfeatures = nfeatures_row[x];
|
|
unsigned int* colors = colors_[featureIdx];
|
|
float* weights = weights_[featureIdx];
|
|
|
|
unsigned int newFeatureColor = func(frame_row, x, cn, minVal_, maxVal_, quantizationLevels_);
|
|
|
|
bool isForeground = false;
|
|
|
|
if (frameNum_ >= numInitializationFrames_)
|
|
{
|
|
// typical operation
|
|
|
|
const double weight = findFeature(newFeatureColor, colors, weights, nfeatures);
|
|
|
|
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
|
|
const double posterior = (weight * backgroundPrior_) / (weight * backgroundPrior_ + (1.0 - weight) * (1.0 - backgroundPrior_));
|
|
|
|
isForeground = ((1.0 - posterior) > decisionThreshold_);
|
|
|
|
// update histogram.
|
|
|
|
if (updateBackgroundModel_)
|
|
{
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
weights[i] *= (float)(1.0f - learningRate_);
|
|
|
|
bool inserted = insertFeature(newFeatureColor, (float)learningRate_, colors, weights, nfeatures, maxFeatures_);
|
|
|
|
if (inserted)
|
|
{
|
|
normalizeHistogram(weights, nfeatures);
|
|
nfeatures_row[x] = nfeatures;
|
|
}
|
|
}
|
|
}
|
|
else if (updateBackgroundModel_)
|
|
{
|
|
// training-mode update
|
|
|
|
insertFeature(newFeatureColor, 1.0f, colors, weights, nfeatures, maxFeatures_);
|
|
|
|
if (frameNum_ == numInitializationFrames_ - 1)
|
|
normalizeHistogram(weights, nfeatures);
|
|
}
|
|
|
|
fgmask_row[x] = (uchar)(-(schar)isForeground);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BackgroundSubtractorGMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate)
|
|
{
|
|
Mat frame = _frame.getMat();
|
|
|
|
CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F);
|
|
CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4);
|
|
|
|
if (newLearningRate != -1.0)
|
|
{
|
|
CV_Assert(newLearningRate >= 0.0 && newLearningRate <= 1.0);
|
|
learningRate = newLearningRate;
|
|
}
|
|
|
|
if (frame.size() != frameSize_)
|
|
{
|
|
double minval = minVal_;
|
|
double maxval = maxVal_;
|
|
if( minVal_ == 0 && maxVal_ == 0 )
|
|
{
|
|
minval = 0;
|
|
maxval = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0;
|
|
}
|
|
initialize(frame.size(), minval, maxval);
|
|
}
|
|
|
|
_fgmask.create(frameSize_, CV_8UC1);
|
|
Mat fgmask = _fgmask.getMat();
|
|
|
|
GMG_LoopBody body(frame, fgmask, nfeatures_, colors_, weights_,
|
|
maxFeatures, learningRate, numInitializationFrames, quantizationLevels, backgroundPrior, decisionThreshold,
|
|
maxVal_, minVal_, frameNum_, updateBackgroundModel);
|
|
parallel_for_(Range(0, frame.rows), body, frame.total()/(double)(1<<16));
|
|
|
|
if (smoothingRadius > 0)
|
|
{
|
|
medianBlur(fgmask, buf_, smoothingRadius);
|
|
swap(fgmask, buf_);
|
|
}
|
|
|
|
// keep track of how many frames we have processed
|
|
++frameNum_;
|
|
}
|
|
|
|
void BackgroundSubtractorGMGImpl::release()
|
|
{
|
|
frameSize_ = Size();
|
|
|
|
nfeatures_.release();
|
|
colors_.release();
|
|
weights_.release();
|
|
buf_.release();
|
|
}
|
|
|
|
|
|
Ptr<BackgroundSubtractorGMG> createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
|
|
{
|
|
Ptr<BackgroundSubtractorGMG> bgfg = makePtr<BackgroundSubtractorGMGImpl>();
|
|
bgfg->setNumFrames(initializationFrames);
|
|
bgfg->setDecisionThreshold(decisionThreshold);
|
|
|
|
return bgfg;
|
|
}
|
|
|
|
/*
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
CV_INIT_ALGORITHM(BackgroundSubtractorGMG, "BackgroundSubtractor.GMG",
|
|
obj.info()->addParam(obj, "maxFeatures", obj.maxFeatures,false,0,0,
|
|
"Maximum number of features to store in histogram. Harsh enforcement of sparsity constraint.");
|
|
obj.info()->addParam(obj, "learningRate", obj.learningRate,false,0,0,
|
|
"Adaptation rate of histogram. Close to 1, slow adaptation. Close to 0, fast adaptation, features forgotten quickly.");
|
|
obj.info()->addParam(obj, "initializationFrames", obj.numInitializationFrames,false,0,0,
|
|
"Number of frames to use to initialize histograms of pixels.");
|
|
obj.info()->addParam(obj, "quantizationLevels", obj.quantizationLevels,false,0,0,
|
|
"Number of discrete colors to be used in histograms. Up-front quantization.");
|
|
obj.info()->addParam(obj, "backgroundPrior", obj.backgroundPrior,false,0,0,
|
|
"Prior probability that each individual pixel is a background pixel.");
|
|
obj.info()->addParam(obj, "smoothingRadius", obj.smoothingRadius,false,0,0,
|
|
"Radius of smoothing kernel to filter noise from FG mask image.");
|
|
obj.info()->addParam(obj, "decisionThreshold", obj.decisionThreshold,false,0,0,
|
|
"Threshold for FG decision rule. Pixel is FG if posterior probability exceeds threshold.");
|
|
obj.info()->addParam(obj, "updateBackgroundModel", obj.updateBackgroundModel,false,0,0,
|
|
"Perform background model update.");
|
|
obj.info()->addParam(obj, "minVal", obj.minVal_,false,0,0,
|
|
"Minimum of the value range (mostly for regression testing)");
|
|
obj.info()->addParam(obj, "maxVal", obj.maxVal_,false,0,0,
|
|
"Maximum of the value range (mostly for regression testing)");
|
|
);
|
|
*/
|
|
|
|
}
|