Maksim Shabunin 108caae216 Modified logistic regression module according to comments
- Reworked documentation to reflect actual code
- Removed some unused variables
- Removed unnecessary 'cv::' modifiers
2014-08-18 19:13:59 +04:00

633 lines
23 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__
#ifdef __cplusplus
# include "opencv2/core.hpp"
#endif
#ifdef __cplusplus
#include <float.h>
#include <map>
#include <iostream>
namespace cv
{
namespace ml
{
/* Variable type */
enum
{
VAR_NUMERICAL =0,
VAR_ORDERED =0,
VAR_CATEGORICAL =1
};
enum
{
TEST_ERROR = 0,
TRAIN_ERROR = 1
};
enum
{
ROW_SAMPLE = 0,
COL_SAMPLE = 1
};
class CV_EXPORTS_W_MAP ParamGrid
{
public:
ParamGrid();
ParamGrid(double _minVal, double _maxVal, double _logStep);
CV_PROP_RW double minVal;
CV_PROP_RW double maxVal;
CV_PROP_RW double logStep;
};
class CV_EXPORTS TrainData
{
public:
static inline float missingValue() { return FLT_MAX; }
virtual ~TrainData();
virtual int getLayout() const = 0;
virtual int getNTrainSamples() const = 0;
virtual int getNTestSamples() const = 0;
virtual int getNSamples() const = 0;
virtual int getNVars() const = 0;
virtual int getNAllVars() const = 0;
virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
virtual Mat getSamples() const = 0;
virtual Mat getMissing() const = 0;
virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
bool compressSamples=true,
bool compressVars=true) const = 0;
virtual Mat getTrainResponses() const = 0;
virtual Mat getTrainNormCatResponses() const = 0;
virtual Mat getTestResponses() const = 0;
virtual Mat getTestNormCatResponses() const = 0;
virtual Mat getResponses() const = 0;
virtual Mat getNormCatResponses() const = 0;
virtual Mat getSampleWeights() const = 0;
virtual Mat getTrainSampleWeights() const = 0;
virtual Mat getTestSampleWeights() const = 0;
virtual Mat getVarIdx() const = 0;
virtual Mat getVarType() const = 0;
virtual int getResponseType() const = 0;
virtual Mat getTrainSampleIdx() const = 0;
virtual Mat getTestSampleIdx() const = 0;
virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
virtual Mat getDefaultSubstValues() const = 0;
virtual int getCatCount(int vi) const = 0;
virtual Mat getClassLabels() const = 0;
virtual Mat getCatOfs() const = 0;
virtual Mat getCatMap() const = 0;
virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
virtual void shuffleTrainTest() = 0;
static Mat getSubVector(const Mat& vec, const Mat& idx);
static Ptr<TrainData> loadFromCSV(const String& filename,
int headerLineCount,
int responseStartIdx=-1,
int responseEndIdx=-1,
const String& varTypeSpec=String(),
char delimiter=',',
char missch='?');
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
InputArray sampleWeights=noArray(), InputArray varType=noArray());
};
class CV_EXPORTS_W StatModel : public Algorithm
{
public:
enum { UPDATE_MODEL = 1, RAW_OUTPUT=1, COMPRESSED_INPUT=2, PREPROCESSED_INPUT=4 };
virtual void clear();
virtual int getVarCount() const = 0;
virtual bool isTrained() const = 0;
virtual bool isClassifier() const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
virtual bool train( InputArray samples, int layout, InputArray responses );
virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
template<typename _Tp> static Ptr<_Tp> load(const String& filename)
{
FileStorage fs(filename, FileStorage::READ);
Ptr<_Tp> model = _Tp::create();
model->read(fs.getFirstTopLevelNode());
return model->isTrained() ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses,
const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>();
}
virtual void save(const String& filename) const;
virtual String getDefaultModelName() const = 0;
};
/****************************************************************************************\
* Normal Bayes Classifier *
\****************************************************************************************/
/* The structure, representing the grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters,
the accuracy estimate being computed by cross-validation.
The grid is logarithmic, so <step> must be greater then 1. */
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
{
public:
class CV_EXPORTS_W Params
{
public:
Params();
};
virtual float predictProb( InputArray inputs, OutputArray outputs,
OutputArray outputProbs, int flags=0 ) const = 0;
virtual void setParams(const Params& params) = 0;
virtual Params getParams() const = 0;
static Ptr<NormalBayesClassifier> create(const Params& params=Params());
};
/****************************************************************************************\
* K-Nearest Neighbour Classifier *
\****************************************************************************************/
// k Nearest Neighbors
class CV_EXPORTS_W KNearest : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params(int defaultK=10, bool isclassifier=true);
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const = 0;
static Ptr<KNearest> create(const Params& params=Params());
};
/****************************************************************************************\
* Support Vector Machines *
\****************************************************************************************/
// SVM model
class CV_EXPORTS_W SVM : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int svm_type, int kernel_type,
double degree, double gamma, double coef0,
double Cvalue, double nu, double p,
const Mat& classWeights, TermCriteria termCrit );
CV_PROP_RW int svmType;
CV_PROP_RW int kernelType;
CV_PROP_RW double gamma, coef0, degree;
CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
CV_PROP_RW double p; // for CV_SVM_EPS_SVR
CV_PROP_RW Mat classWeights; // for CV_SVM_C_SVC
CV_PROP_RW TermCriteria termCrit; // termination criteria
};
class CV_EXPORTS Kernel : public Algorithm
{
public:
virtual int getType() const = 0;
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
};
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
// SVM kernel type
enum { CUSTOM=-1, LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU),
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF),
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
bool balanced=false) = 0;
CV_WRAP virtual Mat getSupportVectors() const = 0;
virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0;
virtual Params getParams() const = 0;
virtual Ptr<Kernel> getKernel() const = 0;
virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
static ParamGrid getDefaultGrid( int param_id );
static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>());
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
class CV_EXPORTS_W EM : public StatModel
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
class CV_EXPORTS_W_MAP Params
{
public:
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, 1e-6));
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual Mat getWeights() const = 0;
virtual Mat getMeans() const = 0;
virtual void getCovs(std::vector<Mat>& covs) const = 0;
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
static Ptr<EM> train(InputArray samples,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithE(InputArray samples, InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> create(const Params& params=Params());
};
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/
class CV_EXPORTS_W DTrees : public StatModel
{
public:
enum { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
CV_PROP_RW int maxCategories;
CV_PROP_RW int maxDepth;
CV_PROP_RW int minSampleCount;
CV_PROP_RW int CVFolds;
CV_PROP_RW bool useSurrogates;
CV_PROP_RW bool use1SERule;
CV_PROP_RW bool truncatePrunedTree;
CV_PROP_RW float regressionAccuracy;
CV_PROP_RW Mat priors;
};
class CV_EXPORTS Node
{
public:
Node();
double value;
int classIdx;
int parent;
int left;
int right;
int defaultDir;
int split;
};
class CV_EXPORTS Split
{
public:
Split();
int varIdx;
bool inversed;
float quality;
int next;
float c;
int subsetOfs;
};
virtual void setDParams(const Params& p);
virtual Params getDParams() const;
virtual const std::vector<int>& getRoots() const = 0;
virtual const std::vector<Node>& getNodes() const = 0;
virtual const std::vector<Split>& getSplits() const = 0;
virtual const std::vector<int>& getSubsets() const = 0;
static Ptr<DTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Random Trees Classifier *
\****************************************************************************************/
class CV_EXPORTS_W RTrees : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, const Mat& priors,
bool calcVarImportance, int nactiveVars,
TermCriteria termCrit );
CV_PROP_RW bool calcVarImportance; // true <=> RF processes variable importance
CV_PROP_RW int nactiveVars;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setRParams(const Params& p) = 0;
virtual Params getRParams() const = 0;
virtual Mat getVarImportance() const = 0;
static Ptr<RTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Boosted tree classifier *
\****************************************************************************************/
class CV_EXPORTS_W Boost : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
CV_PROP_RW int boostType;
CV_PROP_RW int weakCount;
CV_PROP_RW double weightTrimRate;
Params();
Params( int boostType, int weakCount, double weightTrimRate,
int maxDepth, bool useSurrogates, const Mat& priors );
};
// Boosting type
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
virtual Params getBParams() const = 0;
virtual void setBParams(const Params& p) = 0;
static Ptr<Boost> create(const Params& params=Params());
};
/****************************************************************************************\
* Gradient Boosted Trees *
\****************************************************************************************/
/*class CV_EXPORTS_W GBTrees : public DTrees
{
public:
struct CV_EXPORTS_W_MAP Params : public DTrees::Params
{
CV_PROP_RW int weakCount;
CV_PROP_RW int lossFunctionType;
CV_PROP_RW float subsamplePortion;
CV_PROP_RW float shrinkage;
Params();
Params( int lossFunctionType, int weakCount, float shrinkage,
float subsamplePortion, int maxDepth, bool useSurrogates );
};
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
virtual void setK(int k) = 0;
virtual float predictSerial( InputArray samples,
OutputArray weakResponses, int flags) const = 0;
static Ptr<GBTrees> create(const Params& p);
};*/
/****************************************************************************************\
* Artificial Neural Networks (ANN) *
\****************************************************************************************/
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
class CV_EXPORTS_W ANN_MLP : public StatModel
{
public:
struct CV_EXPORTS_W_MAP Params
{
Params();
Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2,
TermCriteria termCrit, int trainMethod, double param1, double param2=0 );
enum { BACKPROP=0, RPROP=1 };
CV_PROP_RW Mat layerSizes;
CV_PROP_RW int activateFunc;
CV_PROP_RW double fparam1;
CV_PROP_RW double fparam2;
CV_PROP_RW TermCriteria termCrit;
CV_PROP_RW int trainMethod;
// backpropagation parameters
CV_PROP_RW double bpDWScale, bpMomentScale;
// rprop parameters
CV_PROP_RW double rpDW0, rpDWPlus, rpDWMinus, rpDWMin, rpDWMax;
};
// possible activation functions
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
// available training flags
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
virtual Mat getWeights(int layerIdx) const = 0;
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
static Ptr<ANN_MLP> create(const Params& params=Params());
};
/****************************************************************************************\
* Logistic Regression *
\****************************************************************************************/
class CV_EXPORTS LogisticRegression : public StatModel
{
public:
class CV_EXPORTS Params
{
public:
Params(double learning_rate = 0.001,
int iters = 1000,
int method = LogisticRegression::BATCH,
int normlization = LogisticRegression::REG_L2,
int reg = 1,
int batch_size = 1);
double alpha;
int num_iters;
int norm;
int regularized;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
enum { REG_L1 = 0, REG_L2 = 1};
enum { BATCH = 0, MINI_BATCH = 1};
// Algorithm interface
virtual void write( FileStorage &fs ) const = 0;
virtual void read( const FileNode &fn ) = 0;
// StatModel interface
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
virtual void clear() = 0;
virtual Mat get_learnt_thetas() const = 0;
static Ptr<LogisticRegression> create( const Params& params = Params() );
};
/****************************************************************************************\
* Auxilary functions declarations *
\****************************************************************************************/
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
average row vector, <cov> - symmetric covariation matrix */
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
/* Generates sample from gaussian mixture distribution */
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights,
int nsamples, OutputArray samples, OutputArray sampClasses );
/* creates test set */
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses);
}
}
#endif // __cplusplus
#endif // __OPENCV_ML_HPP__
/* End of file. */