139 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
// Authors:
 | 
						|
//  * Peter Andreas Entschev, peter@entschev.com
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_OPENCL
 | 
						|
 | 
						|
////////////////////////////////////////////////////////
 | 
						|
// ORB
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
 | 
						|
}
 | 
						|
 | 
						|
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE)
 | 
						|
 | 
						|
PARAM_TEST_CASE(ORB, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold,
 | 
						|
                ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
 | 
						|
{
 | 
						|
    int nFeatures;
 | 
						|
    float scaleFactor;
 | 
						|
    int nLevels;
 | 
						|
    int edgeThreshold;
 | 
						|
    int firstLevel;
 | 
						|
    int WTA_K;
 | 
						|
    int scoreType;
 | 
						|
    int patchSize;
 | 
						|
    bool blurForDescriptor;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        nFeatures = GET_PARAM(0);
 | 
						|
        scaleFactor = GET_PARAM(1);
 | 
						|
        nLevels = GET_PARAM(2);
 | 
						|
        edgeThreshold = GET_PARAM(3);
 | 
						|
        firstLevel = GET_PARAM(4);
 | 
						|
        WTA_K = GET_PARAM(5);
 | 
						|
        scoreType = GET_PARAM(6);
 | 
						|
        patchSize = GET_PARAM(7);
 | 
						|
        blurForDescriptor = GET_PARAM(8);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
OCL_TEST_P(ORB, Accuracy)
 | 
						|
{
 | 
						|
    cv::Mat image = readImage("gpu/perf/aloe.png", cv::IMREAD_GRAYSCALE);
 | 
						|
    ASSERT_FALSE(image.empty());
 | 
						|
 | 
						|
    cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
 | 
						|
    mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
    cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image);
 | 
						|
    cv::ocl::oclMat ocl_mask = cv::ocl::oclMat(mask);
 | 
						|
 | 
						|
    cv::ocl::ORB_OCL orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
 | 
						|
    orb.blurForDescriptor = blurForDescriptor;
 | 
						|
 | 
						|
    std::vector<cv::KeyPoint> keypoints;
 | 
						|
    cv::ocl::oclMat descriptors;
 | 
						|
    orb(ocl_image, ocl_mask, keypoints, descriptors);
 | 
						|
 | 
						|
    cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
 | 
						|
 | 
						|
    std::vector<cv::KeyPoint> keypoints_gold;
 | 
						|
    cv::Mat descriptors_gold;
 | 
						|
    orb_gold(image, mask, keypoints_gold, descriptors_gold);
 | 
						|
 | 
						|
    cv::BFMatcher matcher(cv::NORM_HAMMING);
 | 
						|
    std::vector<cv::DMatch> matches;
 | 
						|
    matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
 | 
						|
 | 
						|
    int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
 | 
						|
    double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
 | 
						|
 | 
						|
    EXPECT_GT(matchedRatio, 0.35);
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, ORB,  testing::Combine(
 | 
						|
                        testing::Values(ORB_FeaturesCount(1000)),
 | 
						|
                        testing::Values(ORB_ScaleFactor(1.2f)),
 | 
						|
                        testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
 | 
						|
                        testing::Values(ORB_EdgeThreshold(31)),
 | 
						|
                        testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)),
 | 
						|
                        testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
 | 
						|
                        testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
 | 
						|
                        testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
 | 
						|
                        testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
 | 
						|
 | 
						|
#endif
 |