2069 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2069 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                        Intel License Agreement
 | 
						|
//
 | 
						|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of Intel Corporation may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef __OPENCV_ML_HPP__
 | 
						|
#define __OPENCV_ML_HPP__
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
#  include "opencv2/core.hpp"
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opencv2/core/core_c.h"
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
 | 
						|
#include <map>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
// Apple defines a check() macro somewhere in the debug headers
 | 
						|
// that interferes with a method definiton in this header
 | 
						|
#undef check
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                               Main struct definitions                                  *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/* log(2*PI) */
 | 
						|
#define CV_LOG2PI (1.8378770664093454835606594728112)
 | 
						|
 | 
						|
/* columns of <trainData> matrix are training samples */
 | 
						|
#define CV_COL_SAMPLE 0
 | 
						|
 | 
						|
/* rows of <trainData> matrix are training samples */
 | 
						|
#define CV_ROW_SAMPLE 1
 | 
						|
 | 
						|
#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)
 | 
						|
 | 
						|
struct CvVectors
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    int dims, count;
 | 
						|
    CvVectors* next;
 | 
						|
    union
 | 
						|
    {
 | 
						|
        uchar** ptr;
 | 
						|
        float** fl;
 | 
						|
        double** db;
 | 
						|
    } data;
 | 
						|
};
 | 
						|
 | 
						|
#if 0
 | 
						|
/* A structure, representing the lattice range of statmodel parameters.
 | 
						|
   It is used for optimizing statmodel parameters by cross-validation method.
 | 
						|
   The lattice is logarithmic, so <step> must be greater then 1. */
 | 
						|
typedef struct CvParamLattice
 | 
						|
{
 | 
						|
    double min_val;
 | 
						|
    double max_val;
 | 
						|
    double step;
 | 
						|
}
 | 
						|
CvParamLattice;
 | 
						|
 | 
						|
CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
 | 
						|
                                         double log_step )
 | 
						|
{
 | 
						|
    CvParamLattice pl;
 | 
						|
    pl.min_val = MIN( min_val, max_val );
 | 
						|
    pl.max_val = MAX( min_val, max_val );
 | 
						|
    pl.step = MAX( log_step, 1. );
 | 
						|
    return pl;
 | 
						|
}
 | 
						|
 | 
						|
CV_INLINE CvParamLattice cvDefaultParamLattice( void )
 | 
						|
{
 | 
						|
    CvParamLattice pl = {0,0,0};
 | 
						|
    return pl;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Variable type */
 | 
						|
#define CV_VAR_NUMERICAL    0
 | 
						|
#define CV_VAR_ORDERED      0
 | 
						|
#define CV_VAR_CATEGORICAL  1
 | 
						|
 | 
						|
#define CV_TYPE_NAME_ML_SVM         "opencv-ml-svm"
 | 
						|
#define CV_TYPE_NAME_ML_KNN         "opencv-ml-knn"
 | 
						|
#define CV_TYPE_NAME_ML_NBAYES      "opencv-ml-bayesian"
 | 
						|
#define CV_TYPE_NAME_ML_BOOSTING    "opencv-ml-boost-tree"
 | 
						|
#define CV_TYPE_NAME_ML_TREE        "opencv-ml-tree"
 | 
						|
#define CV_TYPE_NAME_ML_ANN_MLP     "opencv-ml-ann-mlp"
 | 
						|
#define CV_TYPE_NAME_ML_CNN         "opencv-ml-cnn"
 | 
						|
#define CV_TYPE_NAME_ML_RTREES      "opencv-ml-random-trees"
 | 
						|
#define CV_TYPE_NAME_ML_ERTREES     "opencv-ml-extremely-randomized-trees"
 | 
						|
#define CV_TYPE_NAME_ML_GBT         "opencv-ml-gradient-boosting-trees"
 | 
						|
 | 
						|
#define CV_TRAIN_ERROR  0
 | 
						|
#define CV_TEST_ERROR   1
 | 
						|
 | 
						|
class CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    CvStatModel();
 | 
						|
    virtual ~CvStatModel();
 | 
						|
 | 
						|
    virtual void clear();
 | 
						|
 | 
						|
    CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
 | 
						|
    CV_WRAP virtual void load( const char* filename, const char* name=0 );
 | 
						|
 | 
						|
    virtual void write( CvFileStorage* storage, const char* name ) const;
 | 
						|
    virtual void read( CvFileStorage* storage, CvFileNode* node );
 | 
						|
 | 
						|
protected:
 | 
						|
    const char* default_model_name;
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                 Normal Bayes Classifier                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/* The structure, representing the grid range of statmodel parameters.
 | 
						|
   It is used for optimizing statmodel accuracy by varying model parameters,
 | 
						|
   the accuracy estimate being computed by cross-validation.
 | 
						|
   The grid is logarithmic, so <step> must be greater then 1. */
 | 
						|
 | 
						|
class CvMLData;
 | 
						|
 | 
						|
struct CvParamGrid
 | 
						|
{
 | 
						|
    // SVM params type
 | 
						|
    enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
 | 
						|
 | 
						|
    CvParamGrid()
 | 
						|
    {
 | 
						|
        min_val = max_val = step = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    CvParamGrid( double min_val, double max_val, double log_step );
 | 
						|
    //CvParamGrid( int param_id );
 | 
						|
    bool check() const;
 | 
						|
 | 
						|
    CV_PROP_RW double min_val;
 | 
						|
    CV_PROP_RW double max_val;
 | 
						|
    CV_PROP_RW double step;
 | 
						|
};
 | 
						|
 | 
						|
inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
 | 
						|
{
 | 
						|
    min_val = _min_val;
 | 
						|
    max_val = _max_val;
 | 
						|
    step = _log_step;
 | 
						|
}
 | 
						|
 | 
						|
class CvNormalBayesClassifier : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CvNormalBayesClassifier();
 | 
						|
    virtual ~CvNormalBayesClassifier();
 | 
						|
 | 
						|
    CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
 | 
						|
        const CvMat* varIdx=0, const CvMat* sampleIdx=0 );
 | 
						|
 | 
						|
    virtual bool train( const CvMat* trainData, const CvMat* responses,
 | 
						|
        const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );
 | 
						|
 | 
						|
    virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0, CV_OUT CvMat* results_prob=0 ) const;
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
                            const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
                       const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | 
						|
                       bool update=false );
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0, CV_OUT cv::Mat* results_prob=0 ) const;
 | 
						|
 | 
						|
    virtual void write( CvFileStorage* storage, const char* name ) const;
 | 
						|
    virtual void read( CvFileStorage* storage, CvFileNode* node );
 | 
						|
 | 
						|
protected:
 | 
						|
    int     var_count, var_all;
 | 
						|
    CvMat*  var_idx;
 | 
						|
    CvMat*  cls_labels;
 | 
						|
    CvMat** count;
 | 
						|
    CvMat** sum;
 | 
						|
    CvMat** productsum;
 | 
						|
    CvMat** avg;
 | 
						|
    CvMat** inv_eigen_values;
 | 
						|
    CvMat** cov_rotate_mats;
 | 
						|
    CvMat*  c;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                          K-Nearest Neighbour Classifier                                *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
// k Nearest Neighbors
 | 
						|
class CvKNearest : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    CV_WRAP CvKNearest();
 | 
						|
    virtual ~CvKNearest();
 | 
						|
 | 
						|
    CvKNearest( const CvMat* trainData, const CvMat* responses,
 | 
						|
                const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );
 | 
						|
 | 
						|
    virtual bool train( const CvMat* trainData, const CvMat* responses,
 | 
						|
                        const CvMat* sampleIdx=0, bool is_regression=false,
 | 
						|
                        int maxK=32, bool updateBase=false );
 | 
						|
 | 
						|
    virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
 | 
						|
        const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;
 | 
						|
 | 
						|
    CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
               const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
 | 
						|
                       int maxK=32, bool updateBase=false );
 | 
						|
 | 
						|
    virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
 | 
						|
                                const float** neighbors=0, cv::Mat* neighborResponses=0,
 | 
						|
                                cv::Mat* dist=0 ) const;
 | 
						|
    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
 | 
						|
                                        CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
 | 
						|
 | 
						|
    virtual void clear();
 | 
						|
    int get_max_k() const;
 | 
						|
    int get_var_count() const;
 | 
						|
    int get_sample_count() const;
 | 
						|
    bool is_regression() const;
 | 
						|
 | 
						|
    virtual float write_results( int k, int k1, int start, int end,
 | 
						|
        const float* neighbor_responses, const float* dist, CvMat* _results,
 | 
						|
        CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
 | 
						|
 | 
						|
    virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
 | 
						|
        float* neighbor_responses, const float** neighbors, float* dist ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    int max_k, var_count;
 | 
						|
    int total;
 | 
						|
    bool regression;
 | 
						|
    CvVectors* samples;
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Support Vector Machines                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
// SVM training parameters
 | 
						|
struct CvSVMParams
 | 
						|
{
 | 
						|
    CvSVMParams();
 | 
						|
    CvSVMParams( int svm_type, int kernel_type,
 | 
						|
                 double degree, double gamma, double coef0,
 | 
						|
                 double Cvalue, double nu, double p,
 | 
						|
                 CvMat* class_weights, CvTermCriteria term_crit );
 | 
						|
 | 
						|
    CV_PROP_RW int         svm_type;
 | 
						|
    CV_PROP_RW int         kernel_type;
 | 
						|
    CV_PROP_RW double      degree; // for poly
 | 
						|
    CV_PROP_RW double      gamma;  // for poly/rbf/sigmoid/chi2
 | 
						|
    CV_PROP_RW double      coef0;  // for poly/sigmoid
 | 
						|
 | 
						|
    CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
 | 
						|
    CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
 | 
						|
    CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
 | 
						|
    CvMat*      class_weights; // for CV_SVM_C_SVC
 | 
						|
    CV_PROP_RW CvTermCriteria term_crit; // termination criteria
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvSVMKernel
 | 
						|
{
 | 
						|
    typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
 | 
						|
                                       const float* another, float* results );
 | 
						|
    CvSVMKernel();
 | 
						|
    CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
 | 
						|
    virtual bool create( const CvSVMParams* params, Calc _calc_func );
 | 
						|
    virtual ~CvSVMKernel();
 | 
						|
 | 
						|
    virtual void clear();
 | 
						|
    virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );
 | 
						|
 | 
						|
    const CvSVMParams* params;
 | 
						|
    Calc calc_func;
 | 
						|
 | 
						|
    virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
 | 
						|
                                    const float* another, float* results,
 | 
						|
                                    double alpha, double beta );
 | 
						|
    virtual void calc_intersec( int vcount, int var_count, const float** vecs,
 | 
						|
                            const float* another, float* results );
 | 
						|
    virtual void calc_chi2( int vec_count, int vec_size, const float** vecs,
 | 
						|
                              const float* another, float* results );
 | 
						|
    virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
 | 
						|
                              const float* another, float* results );
 | 
						|
    virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
 | 
						|
                           const float* another, float* results );
 | 
						|
    virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
 | 
						|
                            const float* another, float* results );
 | 
						|
    virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
 | 
						|
                               const float* another, float* results );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvSVMKernelRow
 | 
						|
{
 | 
						|
    CvSVMKernelRow* prev;
 | 
						|
    CvSVMKernelRow* next;
 | 
						|
    float* data;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvSVMSolutionInfo
 | 
						|
{
 | 
						|
    double obj;
 | 
						|
    double rho;
 | 
						|
    double upper_bound_p;
 | 
						|
    double upper_bound_n;
 | 
						|
    double r;   // for Solver_NU
 | 
						|
};
 | 
						|
 | 
						|
class CvSVMSolver
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
 | 
						|
    typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
 | 
						|
    typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );
 | 
						|
 | 
						|
    CvSVMSolver();
 | 
						|
 | 
						|
    CvSVMSolver( int count, int var_count, const float** samples, schar* y,
 | 
						|
                 int alpha_count, double* alpha, double Cp, double Cn,
 | 
						|
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
 | 
						|
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
 | 
						|
    virtual bool create( int count, int var_count, const float** samples, schar* y,
 | 
						|
                 int alpha_count, double* alpha, double Cp, double Cn,
 | 
						|
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
 | 
						|
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
 | 
						|
    virtual ~CvSVMSolver();
 | 
						|
 | 
						|
    virtual void clear();
 | 
						|
    virtual bool solve_generic( CvSVMSolutionInfo& si );
 | 
						|
 | 
						|
    virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
 | 
						|
                              double Cp, double Cn, CvMemStorage* storage,
 | 
						|
                              CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
 | 
						|
    virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
 | 
						|
                               CvMemStorage* storage, CvSVMKernel* kernel,
 | 
						|
                               double* alpha, CvSVMSolutionInfo& si );
 | 
						|
    virtual bool solve_one_class( int count, int var_count, const float** samples,
 | 
						|
                                  CvMemStorage* storage, CvSVMKernel* kernel,
 | 
						|
                                  double* alpha, CvSVMSolutionInfo& si );
 | 
						|
 | 
						|
    virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
 | 
						|
                                CvMemStorage* storage, CvSVMKernel* kernel,
 | 
						|
                                double* alpha, CvSVMSolutionInfo& si );
 | 
						|
 | 
						|
    virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
 | 
						|
                               CvMemStorage* storage, CvSVMKernel* kernel,
 | 
						|
                               double* alpha, CvSVMSolutionInfo& si );
 | 
						|
 | 
						|
    virtual float* get_row_base( int i, bool* _existed );
 | 
						|
    virtual float* get_row( int i, float* dst );
 | 
						|
 | 
						|
    int sample_count;
 | 
						|
    int var_count;
 | 
						|
    int cache_size;
 | 
						|
    int cache_line_size;
 | 
						|
    const float** samples;
 | 
						|
    const CvSVMParams* params;
 | 
						|
    CvMemStorage* storage;
 | 
						|
    CvSVMKernelRow lru_list;
 | 
						|
    CvSVMKernelRow* rows;
 | 
						|
 | 
						|
    int alpha_count;
 | 
						|
 | 
						|
    double* G;
 | 
						|
    double* alpha;
 | 
						|
 | 
						|
    // -1 - lower bound, 0 - free, 1 - upper bound
 | 
						|
    schar* alpha_status;
 | 
						|
 | 
						|
    schar* y;
 | 
						|
    double* b;
 | 
						|
    float* buf[2];
 | 
						|
    double eps;
 | 
						|
    int max_iter;
 | 
						|
    double C[2];  // C[0] == Cn, C[1] == Cp
 | 
						|
    CvSVMKernel* kernel;
 | 
						|
 | 
						|
    SelectWorkingSet select_working_set_func;
 | 
						|
    CalcRho calc_rho_func;
 | 
						|
    GetRow get_row_func;
 | 
						|
 | 
						|
    virtual bool select_working_set( int& i, int& j );
 | 
						|
    virtual bool select_working_set_nu_svm( int& i, int& j );
 | 
						|
    virtual void calc_rho( double& rho, double& r );
 | 
						|
    virtual void calc_rho_nu_svm( double& rho, double& r );
 | 
						|
 | 
						|
    virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
 | 
						|
    virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
 | 
						|
    virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvSVMDecisionFunc
 | 
						|
{
 | 
						|
    double rho;
 | 
						|
    int sv_count;
 | 
						|
    double* alpha;
 | 
						|
    int* sv_index;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// SVM model
 | 
						|
class CvSVM : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    // SVM type
 | 
						|
    enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
 | 
						|
 | 
						|
    // SVM kernel type
 | 
						|
    enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
 | 
						|
 | 
						|
    // SVM params type
 | 
						|
    enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
 | 
						|
 | 
						|
    CV_WRAP CvSVM();
 | 
						|
    virtual ~CvSVM();
 | 
						|
 | 
						|
    CvSVM( const CvMat* trainData, const CvMat* responses,
 | 
						|
           const CvMat* varIdx=0, const CvMat* sampleIdx=0,
 | 
						|
           CvSVMParams params=CvSVMParams() );
 | 
						|
 | 
						|
    virtual bool train( const CvMat* trainData, const CvMat* responses,
 | 
						|
                        const CvMat* varIdx=0, const CvMat* sampleIdx=0,
 | 
						|
                        CvSVMParams params=CvSVMParams() );
 | 
						|
 | 
						|
    virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
 | 
						|
        const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
 | 
						|
        int kfold = 10,
 | 
						|
        CvParamGrid Cgrid      = get_default_grid(CvSVM::C),
 | 
						|
        CvParamGrid gammaGrid  = get_default_grid(CvSVM::GAMMA),
 | 
						|
        CvParamGrid pGrid      = get_default_grid(CvSVM::P),
 | 
						|
        CvParamGrid nuGrid     = get_default_grid(CvSVM::NU),
 | 
						|
        CvParamGrid coeffGrid  = get_default_grid(CvSVM::COEF),
 | 
						|
        CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
 | 
						|
        bool balanced=false );
 | 
						|
 | 
						|
    virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
 | 
						|
    virtual float predict( const CvMat* samples, CV_OUT CvMat* results, bool returnDFVal=false ) const;
 | 
						|
 | 
						|
    CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
          const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | 
						|
          CvSVMParams params=CvSVMParams() );
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
                       const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | 
						|
                       CvSVMParams params=CvSVMParams() );
 | 
						|
 | 
						|
    CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
 | 
						|
                            const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
 | 
						|
                            int k_fold = 10,
 | 
						|
                            CvParamGrid Cgrid      = CvSVM::get_default_grid(CvSVM::C),
 | 
						|
                            CvParamGrid gammaGrid  = CvSVM::get_default_grid(CvSVM::GAMMA),
 | 
						|
                            CvParamGrid pGrid      = CvSVM::get_default_grid(CvSVM::P),
 | 
						|
                            CvParamGrid nuGrid     = CvSVM::get_default_grid(CvSVM::NU),
 | 
						|
                            CvParamGrid coeffGrid  = CvSVM::get_default_grid(CvSVM::COEF),
 | 
						|
                            CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
 | 
						|
                            bool balanced=false);
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
 | 
						|
    CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const;
 | 
						|
 | 
						|
    CV_WRAP virtual int get_support_vector_count() const;
 | 
						|
    virtual const float* get_support_vector(int i) const;
 | 
						|
    virtual CvSVMParams get_params() const { return params; }
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; }
 | 
						|
 | 
						|
    static CvParamGrid get_default_grid( int param_id );
 | 
						|
 | 
						|
    virtual void write( CvFileStorage* storage, const char* name ) const;
 | 
						|
    virtual void read( CvFileStorage* storage, CvFileNode* node );
 | 
						|
    CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    virtual bool set_params( const CvSVMParams& params );
 | 
						|
    virtual bool train1( int sample_count, int var_count, const float** samples,
 | 
						|
                    const void* responses, double Cp, double Cn,
 | 
						|
                    CvMemStorage* _storage, double* alpha, double& rho );
 | 
						|
    virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
 | 
						|
                    const CvMat* responses, CvMemStorage* _storage, double* alpha );
 | 
						|
    virtual void create_kernel();
 | 
						|
    virtual void create_solver();
 | 
						|
 | 
						|
    virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;
 | 
						|
 | 
						|
    virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
    void optimize_linear_svm();
 | 
						|
 | 
						|
    CvSVMParams params;
 | 
						|
    CvMat* class_labels;
 | 
						|
    int var_all;
 | 
						|
    float** sv;
 | 
						|
    int sv_total;
 | 
						|
    CvMat* var_idx;
 | 
						|
    CvMat* class_weights;
 | 
						|
    CvSVMDecisionFunc* decision_func;
 | 
						|
    CvMemStorage* storage;
 | 
						|
 | 
						|
    CvSVMSolver* solver;
 | 
						|
    CvSVMKernel* kernel;
 | 
						|
 | 
						|
private:
 | 
						|
    CvSVM(const CvSVM&);
 | 
						|
    CvSVM& operator = (const CvSVM&);
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      Decision Tree                                     *
 | 
						|
\****************************************************************************************/\
 | 
						|
struct CvPair16u32s
 | 
						|
{
 | 
						|
    unsigned short* u;
 | 
						|
    int* i;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#define CV_DTREE_CAT_DIR(idx,subset) \
 | 
						|
    (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
 | 
						|
 | 
						|
struct CvDTreeSplit
 | 
						|
{
 | 
						|
    int var_idx;
 | 
						|
    int condensed_idx;
 | 
						|
    int inversed;
 | 
						|
    float quality;
 | 
						|
    CvDTreeSplit* next;
 | 
						|
    union
 | 
						|
    {
 | 
						|
        int subset[2];
 | 
						|
        struct
 | 
						|
        {
 | 
						|
            float c;
 | 
						|
            int split_point;
 | 
						|
        }
 | 
						|
        ord;
 | 
						|
    };
 | 
						|
};
 | 
						|
 | 
						|
struct CvDTreeNode
 | 
						|
{
 | 
						|
    int class_idx;
 | 
						|
    int Tn;
 | 
						|
    double value;
 | 
						|
 | 
						|
    CvDTreeNode* parent;
 | 
						|
    CvDTreeNode* left;
 | 
						|
    CvDTreeNode* right;
 | 
						|
 | 
						|
    CvDTreeSplit* split;
 | 
						|
 | 
						|
    int sample_count;
 | 
						|
    int depth;
 | 
						|
    int* num_valid;
 | 
						|
    int offset;
 | 
						|
    int buf_idx;
 | 
						|
    double maxlr;
 | 
						|
 | 
						|
    // global pruning data
 | 
						|
    int complexity;
 | 
						|
    double alpha;
 | 
						|
    double node_risk, tree_risk, tree_error;
 | 
						|
 | 
						|
    // cross-validation pruning data
 | 
						|
    int* cv_Tn;
 | 
						|
    double* cv_node_risk;
 | 
						|
    double* cv_node_error;
 | 
						|
 | 
						|
    int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
 | 
						|
    void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvDTreeParams
 | 
						|
{
 | 
						|
    CV_PROP_RW int   max_categories;
 | 
						|
    CV_PROP_RW int   max_depth;
 | 
						|
    CV_PROP_RW int   min_sample_count;
 | 
						|
    CV_PROP_RW int   cv_folds;
 | 
						|
    CV_PROP_RW bool  use_surrogates;
 | 
						|
    CV_PROP_RW bool  use_1se_rule;
 | 
						|
    CV_PROP_RW bool  truncate_pruned_tree;
 | 
						|
    CV_PROP_RW float regression_accuracy;
 | 
						|
    const float* priors;
 | 
						|
 | 
						|
    CvDTreeParams();
 | 
						|
    CvDTreeParams( int max_depth, int min_sample_count,
 | 
						|
                   float regression_accuracy, bool use_surrogates,
 | 
						|
                   int max_categories, int cv_folds,
 | 
						|
                   bool use_1se_rule, bool truncate_pruned_tree,
 | 
						|
                   const float* priors );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvDTreeTrainData
 | 
						|
{
 | 
						|
    CvDTreeTrainData();
 | 
						|
    CvDTreeTrainData( const CvMat* trainData, int tflag,
 | 
						|
                      const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                      const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                      const CvMat* missingDataMask=0,
 | 
						|
                      const CvDTreeParams& params=CvDTreeParams(),
 | 
						|
                      bool _shared=false, bool _add_labels=false );
 | 
						|
    virtual ~CvDTreeTrainData();
 | 
						|
 | 
						|
    virtual void set_data( const CvMat* trainData, int tflag,
 | 
						|
                          const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                          const CvMat* missingDataMask=0,
 | 
						|
                          const CvDTreeParams& params=CvDTreeParams(),
 | 
						|
                          bool _shared=false, bool _add_labels=false,
 | 
						|
                          bool _update_data=false );
 | 
						|
    virtual void do_responses_copy();
 | 
						|
 | 
						|
    virtual void get_vectors( const CvMat* _subsample_idx,
 | 
						|
         float* values, uchar* missing, float* responses, bool get_class_idx=false );
 | 
						|
 | 
						|
    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
 | 
						|
 | 
						|
    virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
    // release all the data
 | 
						|
    virtual void clear();
 | 
						|
 | 
						|
    int get_num_classes() const;
 | 
						|
    int get_var_type(int vi) const;
 | 
						|
    int get_work_var_count() const {return work_var_count;}
 | 
						|
 | 
						|
    virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
 | 
						|
    virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
 | 
						|
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
 | 
						|
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
 | 
						|
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
 | 
						|
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
 | 
						|
                                   const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
 | 
						|
    virtual int get_child_buf_idx( CvDTreeNode* n );
 | 
						|
 | 
						|
    ////////////////////////////////////
 | 
						|
 | 
						|
    virtual bool set_params( const CvDTreeParams& params );
 | 
						|
    virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
 | 
						|
                                   int storage_idx, int offset );
 | 
						|
 | 
						|
    virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
 | 
						|
                int split_point, int inversed, float quality );
 | 
						|
    virtual CvDTreeSplit* new_split_cat( int vi, float quality );
 | 
						|
    virtual void free_node_data( CvDTreeNode* node );
 | 
						|
    virtual void free_train_data();
 | 
						|
    virtual void free_node( CvDTreeNode* node );
 | 
						|
 | 
						|
    int sample_count, var_all, var_count, max_c_count;
 | 
						|
    int ord_var_count, cat_var_count, work_var_count;
 | 
						|
    bool have_labels, have_priors;
 | 
						|
    bool is_classifier;
 | 
						|
    int tflag;
 | 
						|
 | 
						|
    const CvMat* train_data;
 | 
						|
    const CvMat* responses;
 | 
						|
    CvMat* responses_copy; // used in Boosting
 | 
						|
 | 
						|
    int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
 | 
						|
    bool shared;
 | 
						|
    int is_buf_16u;
 | 
						|
 | 
						|
    CvMat* cat_count;
 | 
						|
    CvMat* cat_ofs;
 | 
						|
    CvMat* cat_map;
 | 
						|
 | 
						|
    CvMat* counts;
 | 
						|
    CvMat* buf;
 | 
						|
    inline size_t get_length_subbuf() const
 | 
						|
    {
 | 
						|
        size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    CvMat* direction;
 | 
						|
    CvMat* split_buf;
 | 
						|
 | 
						|
    CvMat* var_idx;
 | 
						|
    CvMat* var_type; // i-th element =
 | 
						|
                     //   k<0  - ordered
 | 
						|
                     //   k>=0 - categorical, see k-th element of cat_* arrays
 | 
						|
    CvMat* priors;
 | 
						|
    CvMat* priors_mult;
 | 
						|
 | 
						|
    CvDTreeParams params;
 | 
						|
 | 
						|
    CvMemStorage* tree_storage;
 | 
						|
    CvMemStorage* temp_storage;
 | 
						|
 | 
						|
    CvDTreeNode* data_root;
 | 
						|
 | 
						|
    CvSet* node_heap;
 | 
						|
    CvSet* split_heap;
 | 
						|
    CvSet* cv_heap;
 | 
						|
    CvSet* nv_heap;
 | 
						|
 | 
						|
    cv::RNG* rng;
 | 
						|
};
 | 
						|
 | 
						|
class CvDTree;
 | 
						|
class CvForestTree;
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
    struct DTreeBestSplitFinder;
 | 
						|
    struct ForestTreeBestSplitFinder;
 | 
						|
}
 | 
						|
 | 
						|
class CvDTree : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CvDTree();
 | 
						|
    virtual ~CvDTree();
 | 
						|
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
                        const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                        const CvMat* missingDataMask=0,
 | 
						|
                        CvDTreeParams params=CvDTreeParams() );
 | 
						|
 | 
						|
    virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );
 | 
						|
 | 
						|
    // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | 
						|
    virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );
 | 
						|
 | 
						|
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );
 | 
						|
 | 
						|
    virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
 | 
						|
                                  bool preprocessedInput=false ) const;
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | 
						|
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
                       const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                       CvDTreeParams params=CvDTreeParams() );
 | 
						|
 | 
						|
    CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                                  bool preprocessedInput=false ) const;
 | 
						|
    CV_WRAP virtual cv::Mat getVarImportance();
 | 
						|
 | 
						|
    virtual const CvMat* get_var_importance();
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void write( CvFileStorage* fs, const char* name ) const;
 | 
						|
 | 
						|
    // special read & write methods for trees in the tree ensembles
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node,
 | 
						|
                       CvDTreeTrainData* data );
 | 
						|
    virtual void write( CvFileStorage* fs ) const;
 | 
						|
 | 
						|
    const CvDTreeNode* get_root() const;
 | 
						|
    int get_pruned_tree_idx() const;
 | 
						|
    CvDTreeTrainData* get_data();
 | 
						|
 | 
						|
protected:
 | 
						|
    friend struct cv::DTreeBestSplitFinder;
 | 
						|
 | 
						|
    virtual bool do_train( const CvMat* _subsample_idx );
 | 
						|
 | 
						|
    virtual void try_split_node( CvDTreeNode* n );
 | 
						|
    virtual void split_node_data( CvDTreeNode* n );
 | 
						|
    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | 
						|
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | 
						|
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | 
						|
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | 
						|
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | 
						|
    virtual double calc_node_dir( CvDTreeNode* node );
 | 
						|
    virtual void complete_node_dir( CvDTreeNode* node );
 | 
						|
    virtual void cluster_categories( const int* vectors, int vector_count,
 | 
						|
        int var_count, int* sums, int k, int* cluster_labels );
 | 
						|
 | 
						|
    virtual void calc_node_value( CvDTreeNode* node );
 | 
						|
 | 
						|
    virtual void prune_cv();
 | 
						|
    virtual double update_tree_rnc( int T, int fold );
 | 
						|
    virtual int cut_tree( int T, int fold, double min_alpha );
 | 
						|
    virtual void free_prune_data(bool cut_tree);
 | 
						|
    virtual void free_tree();
 | 
						|
 | 
						|
    virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
 | 
						|
    virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
 | 
						|
    virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
 | 
						|
    virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void write_tree_nodes( CvFileStorage* fs ) const;
 | 
						|
    virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
    CvDTreeNode* root;
 | 
						|
    CvMat* var_importance;
 | 
						|
    CvDTreeTrainData* data;
 | 
						|
    CvMat train_data_hdr, responses_hdr;
 | 
						|
    cv::Mat train_data_mat, responses_mat;
 | 
						|
 | 
						|
public:
 | 
						|
    int pruned_tree_idx;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Random Trees Classifier                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
class CvRTrees;
 | 
						|
 | 
						|
class CvForestTree: public CvDTree
 | 
						|
{
 | 
						|
public:
 | 
						|
    CvForestTree();
 | 
						|
    virtual ~CvForestTree();
 | 
						|
 | 
						|
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );
 | 
						|
 | 
						|
    virtual int get_var_count() const {return data ? data->var_count : 0;}
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );
 | 
						|
 | 
						|
    /* dummy methods to avoid warnings: BEGIN */
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
                        const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                        const CvMat* missingDataMask=0,
 | 
						|
                        CvDTreeParams params=CvDTreeParams() );
 | 
						|
 | 
						|
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node,
 | 
						|
                       CvDTreeTrainData* data );
 | 
						|
    /* dummy methods to avoid warnings: END */
 | 
						|
 | 
						|
protected:
 | 
						|
    friend struct cv::ForestTreeBestSplitFinder;
 | 
						|
 | 
						|
    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
 | 
						|
    CvRTrees* forest;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct CvRTParams : public CvDTreeParams
 | 
						|
{
 | 
						|
    //Parameters for the forest
 | 
						|
    CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
 | 
						|
    CV_PROP_RW int nactive_vars;
 | 
						|
    CV_PROP_RW CvTermCriteria term_crit;
 | 
						|
 | 
						|
    CvRTParams();
 | 
						|
    CvRTParams( int max_depth, int min_sample_count,
 | 
						|
                float regression_accuracy, bool use_surrogates,
 | 
						|
                int max_categories, const float* priors, bool calc_var_importance,
 | 
						|
                int nactive_vars, int max_num_of_trees_in_the_forest,
 | 
						|
                float forest_accuracy, int termcrit_type );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CvRTrees : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CvRTrees();
 | 
						|
    virtual ~CvRTrees();
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
                        const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                        const CvMat* missingDataMask=0,
 | 
						|
                        CvRTParams params=CvRTParams() );
 | 
						|
 | 
						|
    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
 | 
						|
    virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
 | 
						|
    virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | 
						|
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
                       const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                       CvRTParams params=CvRTParams() );
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
 | 
						|
    CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
 | 
						|
    CV_WRAP virtual cv::Mat getVarImportance();
 | 
						|
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    virtual const CvMat* get_var_importance();
 | 
						|
    virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
 | 
						|
        const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
 | 
						|
 | 
						|
    virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | 
						|
 | 
						|
    virtual float get_train_error();
 | 
						|
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void write( CvFileStorage* fs, const char* name ) const;
 | 
						|
 | 
						|
    CvMat* get_active_var_mask();
 | 
						|
    CvRNG* get_rng();
 | 
						|
 | 
						|
    int get_tree_count() const;
 | 
						|
    CvForestTree* get_tree(int i) const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual cv::String getName() const;
 | 
						|
 | 
						|
    virtual bool grow_forest( const CvTermCriteria term_crit );
 | 
						|
 | 
						|
    // array of the trees of the forest
 | 
						|
    CvForestTree** trees;
 | 
						|
    CvDTreeTrainData* data;
 | 
						|
    CvMat train_data_hdr, responses_hdr;
 | 
						|
    cv::Mat train_data_mat, responses_mat;
 | 
						|
    int ntrees;
 | 
						|
    int nclasses;
 | 
						|
    double oob_error;
 | 
						|
    CvMat* var_importance;
 | 
						|
    int nsamples;
 | 
						|
 | 
						|
    cv::RNG* rng;
 | 
						|
    CvMat* active_var_mask;
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                           Extremely randomized trees Classifier                        *
 | 
						|
\****************************************************************************************/
 | 
						|
struct CvERTreeTrainData : public CvDTreeTrainData
 | 
						|
{
 | 
						|
    virtual void set_data( const CvMat* trainData, int tflag,
 | 
						|
                          const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                          const CvMat* missingDataMask=0,
 | 
						|
                          const CvDTreeParams& params=CvDTreeParams(),
 | 
						|
                          bool _shared=false, bool _add_labels=false,
 | 
						|
                          bool _update_data=false );
 | 
						|
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
 | 
						|
                                   const float** ord_values, const int** missing, int* sample_buf = 0 );
 | 
						|
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
 | 
						|
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
 | 
						|
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
 | 
						|
    virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
 | 
						|
                              float* responses, bool get_class_idx=false );
 | 
						|
    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
 | 
						|
    const CvMat* missing_mask;
 | 
						|
};
 | 
						|
 | 
						|
class CvForestERTree : public CvForestTree
 | 
						|
{
 | 
						|
protected:
 | 
						|
    virtual double calc_node_dir( CvDTreeNode* node );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual void split_node_data( CvDTreeNode* n );
 | 
						|
};
 | 
						|
 | 
						|
class CvERTrees : public CvRTrees
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CvERTrees();
 | 
						|
    virtual ~CvERTrees();
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
                        const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                        const CvMat* missingDataMask=0,
 | 
						|
                        CvRTParams params=CvRTParams());
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | 
						|
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
                       const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                       CvRTParams params=CvRTParams());
 | 
						|
    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
 | 
						|
protected:
 | 
						|
    virtual cv::String getName() const;
 | 
						|
    virtual bool grow_forest( const CvTermCriteria term_crit );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Boosted tree classifier                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
struct CvBoostParams : public CvDTreeParams
 | 
						|
{
 | 
						|
    CV_PROP_RW int boost_type;
 | 
						|
    CV_PROP_RW int weak_count;
 | 
						|
    CV_PROP_RW int split_criteria;
 | 
						|
    CV_PROP_RW double weight_trim_rate;
 | 
						|
 | 
						|
    CvBoostParams();
 | 
						|
    CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
 | 
						|
                   int max_depth, bool use_surrogates, const float* priors );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CvBoost;
 | 
						|
 | 
						|
class CvBoostTree: public CvDTree
 | 
						|
{
 | 
						|
public:
 | 
						|
    CvBoostTree();
 | 
						|
    virtual ~CvBoostTree();
 | 
						|
 | 
						|
    virtual bool train( CvDTreeTrainData* trainData,
 | 
						|
                        const CvMat* subsample_idx, CvBoost* ensemble );
 | 
						|
 | 
						|
    virtual void scale( double s );
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node,
 | 
						|
                       CvBoost* ensemble, CvDTreeTrainData* _data );
 | 
						|
    virtual void clear();
 | 
						|
 | 
						|
    /* dummy methods to avoid warnings: BEGIN */
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
                        const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
                        const CvMat* missingDataMask=0,
 | 
						|
                        CvDTreeParams params=CvDTreeParams() );
 | 
						|
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
 | 
						|
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node,
 | 
						|
                       CvDTreeTrainData* data );
 | 
						|
    /* dummy methods to avoid warnings: END */
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    virtual void try_split_node( CvDTreeNode* n );
 | 
						|
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | 
						|
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | 
						|
    virtual void calc_node_value( CvDTreeNode* n );
 | 
						|
    virtual double calc_node_dir( CvDTreeNode* n );
 | 
						|
 | 
						|
    CvBoost* ensemble;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CvBoost : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    // Boosting type
 | 
						|
    enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
 | 
						|
 | 
						|
    // Splitting criteria
 | 
						|
    enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };
 | 
						|
 | 
						|
    CV_WRAP CvBoost();
 | 
						|
    virtual ~CvBoost();
 | 
						|
 | 
						|
    CvBoost( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvBoostParams params=CvBoostParams() );
 | 
						|
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvBoostParams params=CvBoostParams(),
 | 
						|
             bool update=false );
 | 
						|
 | 
						|
    virtual bool train( CvMLData* data,
 | 
						|
             CvBoostParams params=CvBoostParams(),
 | 
						|
             bool update=false );
 | 
						|
 | 
						|
    virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | 
						|
                           CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
 | 
						|
                           bool raw_mode=false, bool return_sum=false ) const;
 | 
						|
 | 
						|
    CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
 | 
						|
            const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
            const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
            const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
            CvBoostParams params=CvBoostParams() );
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | 
						|
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
                       const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                       CvBoostParams params=CvBoostParams(),
 | 
						|
                       bool update=false );
 | 
						|
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
 | 
						|
                                   const cv::Range& slice=cv::Range::all(), bool rawMode=false,
 | 
						|
                                   bool returnSum=false ) const;
 | 
						|
 | 
						|
    virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | 
						|
 | 
						|
    CV_WRAP virtual void prune( CvSlice slice );
 | 
						|
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    virtual void write( CvFileStorage* storage, const char* name ) const;
 | 
						|
    virtual void read( CvFileStorage* storage, CvFileNode* node );
 | 
						|
    virtual const CvMat* get_active_vars(bool absolute_idx=true);
 | 
						|
 | 
						|
    CvSeq* get_weak_predictors();
 | 
						|
 | 
						|
    CvMat* get_weights();
 | 
						|
    CvMat* get_subtree_weights();
 | 
						|
    CvMat* get_weak_response();
 | 
						|
    const CvBoostParams& get_params() const;
 | 
						|
    const CvDTreeTrainData* get_data() const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    virtual bool set_params( const CvBoostParams& params );
 | 
						|
    virtual void update_weights( CvBoostTree* tree );
 | 
						|
    virtual void trim_weights();
 | 
						|
    virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
    virtual void initialize_weights(double (&p)[2]);
 | 
						|
 | 
						|
    CvDTreeTrainData* data;
 | 
						|
    CvMat train_data_hdr, responses_hdr;
 | 
						|
    cv::Mat train_data_mat, responses_mat;
 | 
						|
    CvBoostParams params;
 | 
						|
    CvSeq* weak;
 | 
						|
 | 
						|
    CvMat* active_vars;
 | 
						|
    CvMat* active_vars_abs;
 | 
						|
    bool have_active_cat_vars;
 | 
						|
 | 
						|
    CvMat* orig_response;
 | 
						|
    CvMat* sum_response;
 | 
						|
    CvMat* weak_eval;
 | 
						|
    CvMat* subsample_mask;
 | 
						|
    CvMat* weights;
 | 
						|
    CvMat* subtree_weights;
 | 
						|
    bool have_subsample;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                   Gradient Boosted Trees                               *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
// DataType: STRUCT CvGBTreesParams
 | 
						|
// Parameters of GBT (Gradient Boosted trees model), including single
 | 
						|
// tree settings and ensemble parameters.
 | 
						|
//
 | 
						|
// weak_count          - count of trees in the ensemble
 | 
						|
// loss_function_type  - loss function used for ensemble training
 | 
						|
// subsample_portion   - portion of whole training set used for
 | 
						|
//                       every single tree training.
 | 
						|
//                       subsample_portion value is in (0.0, 1.0].
 | 
						|
//                       subsample_portion == 1.0 when whole dataset is
 | 
						|
//                       used on each step. Count of sample used on each
 | 
						|
//                       step is computed as
 | 
						|
//                       int(total_samples_count * subsample_portion).
 | 
						|
// shrinkage           - regularization parameter.
 | 
						|
//                       Each tree prediction is multiplied on shrinkage value.
 | 
						|
 | 
						|
 | 
						|
struct CvGBTreesParams : public CvDTreeParams
 | 
						|
{
 | 
						|
    CV_PROP_RW int weak_count;
 | 
						|
    CV_PROP_RW int loss_function_type;
 | 
						|
    CV_PROP_RW float subsample_portion;
 | 
						|
    CV_PROP_RW float shrinkage;
 | 
						|
 | 
						|
    CvGBTreesParams();
 | 
						|
    CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
 | 
						|
        float subsample_portion, int max_depth, bool use_surrogates );
 | 
						|
};
 | 
						|
 | 
						|
// DataType: CLASS CvGBTrees
 | 
						|
// Gradient Boosting Trees (GBT) algorithm implementation.
 | 
						|
//
 | 
						|
// data             - training dataset
 | 
						|
// params           - parameters of the CvGBTrees
 | 
						|
// weak             - array[0..(class_count-1)] of CvSeq
 | 
						|
//                    for storing tree ensembles
 | 
						|
// orig_response    - original responses of the training set samples
 | 
						|
// sum_response     - predicitons of the current model on the training dataset.
 | 
						|
//                    this matrix is updated on every iteration.
 | 
						|
// sum_response_tmp - predicitons of the model on the training set on the next
 | 
						|
//                    step. On every iteration values of sum_responses_tmp are
 | 
						|
//                    computed via sum_responses values. When the current
 | 
						|
//                    step is complete sum_response values become equal to
 | 
						|
//                    sum_responses_tmp.
 | 
						|
// sampleIdx       - indices of samples used for training the ensemble.
 | 
						|
//                    CvGBTrees training procedure takes a set of samples
 | 
						|
//                    (train_data) and a set of responses (responses).
 | 
						|
//                    Only pairs (train_data[i], responses[i]), where i is
 | 
						|
//                    in sample_idx are used for training the ensemble.
 | 
						|
// subsample_train  - indices of samples used for training a single decision
 | 
						|
//                    tree on the current step. This indices are countered
 | 
						|
//                    relatively to the sample_idx, so that pairs
 | 
						|
//                    (train_data[sample_idx[i]], responses[sample_idx[i]])
 | 
						|
//                    are used for training a decision tree.
 | 
						|
//                    Training set is randomly splited
 | 
						|
//                    in two parts (subsample_train and subsample_test)
 | 
						|
//                    on every iteration accordingly to the portion parameter.
 | 
						|
// subsample_test   - relative indices of samples from the training set,
 | 
						|
//                    which are not used for training a tree on the current
 | 
						|
//                    step.
 | 
						|
// missing          - mask of the missing values in the training set. This
 | 
						|
//                    matrix has the same size as train_data. 1 - missing
 | 
						|
//                    value, 0 - not a missing value.
 | 
						|
// class_labels     - output class labels map.
 | 
						|
// rng              - random number generator. Used for spliting the
 | 
						|
//                    training set.
 | 
						|
// class_count      - count of output classes.
 | 
						|
//                    class_count == 1 in the case of regression,
 | 
						|
//                    and > 1 in the case of classification.
 | 
						|
// delta            - Huber loss function parameter.
 | 
						|
// base_value       - start point of the gradient descent procedure.
 | 
						|
//                    model prediction is
 | 
						|
//                    f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
 | 
						|
//                    f_0 is the base value.
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class CvGBTrees : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    /*
 | 
						|
    // DataType: ENUM
 | 
						|
    // Loss functions implemented in CvGBTrees.
 | 
						|
    //
 | 
						|
    // SQUARED_LOSS
 | 
						|
    // problem: regression
 | 
						|
    // loss = (x - x')^2
 | 
						|
    //
 | 
						|
    // ABSOLUTE_LOSS
 | 
						|
    // problem: regression
 | 
						|
    // loss = abs(x - x')
 | 
						|
    //
 | 
						|
    // HUBER_LOSS
 | 
						|
    // problem: regression
 | 
						|
    // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
 | 
						|
    //           1/2*(x - x')^2, if abs(x - x') <= delta,
 | 
						|
    //           where delta is the alpha-quantile of pseudo responses from
 | 
						|
    //           the training set.
 | 
						|
    //
 | 
						|
    // DEVIANCE_LOSS
 | 
						|
    // problem: classification
 | 
						|
    //
 | 
						|
    */
 | 
						|
    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Default constructor. Creates a model only (without training).
 | 
						|
    // Should be followed by one form of the train(...) function.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // CvGBTrees();
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    CV_WRAP CvGBTrees();
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Full form constructor. Creates a gradient boosting model and does the
 | 
						|
    // train.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // CvGBTrees( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams() );
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // trainData    - a set of input feature vectors.
 | 
						|
    //                  size of matrix is
 | 
						|
    //                  <count of samples> x <variables count>
 | 
						|
    //                  or <variables count> x <count of samples>
 | 
						|
    //                  depending on the tflag parameter.
 | 
						|
    //                  matrix values are float.
 | 
						|
    // tflag         - a flag showing how do samples stored in the
 | 
						|
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
 | 
						|
    //                  or column by column (tflag=CV_COL_SAMPLE).
 | 
						|
    // responses     - a vector of responses corresponding to the samples
 | 
						|
    //                  in trainData.
 | 
						|
    // varIdx       - indices of used variables. zero value means that all
 | 
						|
    //                  variables are active.
 | 
						|
    // sampleIdx    - indices of used samples. zero value means that all
 | 
						|
    //                  samples from trainData are in the training set.
 | 
						|
    // varType      - vector of <variables count> length. gives every
 | 
						|
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
 | 
						|
    //                  varType = 0 means all variables are numerical.
 | 
						|
    // missingDataMask  - a mask of misiing values in trainData.
 | 
						|
    //                  missingDataMask = 0 means that there are no missing
 | 
						|
    //                  values.
 | 
						|
    // params         - parameters of GTB algorithm.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    CvGBTrees( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams() );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Destructor.
 | 
						|
    */
 | 
						|
    virtual ~CvGBTrees();
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Gradient tree boosting model training
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams(),
 | 
						|
             bool update=false );
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // trainData    - a set of input feature vectors.
 | 
						|
    //                  size of matrix is
 | 
						|
    //                  <count of samples> x <variables count>
 | 
						|
    //                  or <variables count> x <count of samples>
 | 
						|
    //                  depending on the tflag parameter.
 | 
						|
    //                  matrix values are float.
 | 
						|
    // tflag         - a flag showing how do samples stored in the
 | 
						|
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
 | 
						|
    //                  or column by column (tflag=CV_COL_SAMPLE).
 | 
						|
    // responses     - a vector of responses corresponding to the samples
 | 
						|
    //                  in trainData.
 | 
						|
    // varIdx       - indices of used variables. zero value means that all
 | 
						|
    //                  variables are active.
 | 
						|
    // sampleIdx    - indices of used samples. zero value means that all
 | 
						|
    //                  samples from trainData are in the training set.
 | 
						|
    // varType      - vector of <variables count> length. gives every
 | 
						|
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
 | 
						|
    //                  varType = 0 means all variables are numerical.
 | 
						|
    // missingDataMask  - a mask of misiing values in trainData.
 | 
						|
    //                  missingDataMask = 0 means that there are no missing
 | 
						|
    //                  values.
 | 
						|
    // params         - parameters of GTB algorithm.
 | 
						|
    // update         - is not supported now. (!)
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // Error state.
 | 
						|
    */
 | 
						|
    virtual bool train( const CvMat* trainData, int tflag,
 | 
						|
             const CvMat* responses, const CvMat* varIdx=0,
 | 
						|
             const CvMat* sampleIdx=0, const CvMat* varType=0,
 | 
						|
             const CvMat* missingDataMask=0,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams(),
 | 
						|
             bool update=false );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Gradient tree boosting model training
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual bool train( CvMLData* data,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams(),
 | 
						|
             bool update=false ) {return false;}
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // data          - training set.
 | 
						|
    // params        - parameters of GTB algorithm.
 | 
						|
    // update        - is not supported now. (!)
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // Error state.
 | 
						|
    */
 | 
						|
    virtual bool train( CvMLData* data,
 | 
						|
             CvGBTreesParams params=CvGBTreesParams(),
 | 
						|
             bool update=false );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // Response value prediction
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
 | 
						|
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
 | 
						|
             int k=-1 ) const;
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // sample         - input sample of the same type as in the training set.
 | 
						|
    // missing        - missing values mask. missing=0 if there are no
 | 
						|
    //                   missing values in sample vector.
 | 
						|
    // weak_responses  - predictions of all of the trees.
 | 
						|
    //                   not implemented (!)
 | 
						|
    // slice           - part of the ensemble used for prediction.
 | 
						|
    //                   slice = CV_WHOLE_SEQ when all trees are used.
 | 
						|
    // k               - number of ensemble used.
 | 
						|
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
 | 
						|
    //                   in the case of classification problem
 | 
						|
    //                   <count of output classes-1> ensembles are built.
 | 
						|
    //                   If k = -1 ordinary prediction is the result,
 | 
						|
    //                   otherwise function gives the prediction of the
 | 
						|
    //                   k-th ensemble only.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // Predicted value.
 | 
						|
    */
 | 
						|
    virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
 | 
						|
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
 | 
						|
            int k=-1 ) const;
 | 
						|
 | 
						|
    /*
 | 
						|
    // Response value prediction.
 | 
						|
    // Parallel version (in the case of TBB existence)
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | 
						|
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
 | 
						|
             int k=-1 ) const;
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // sample         - input sample of the same type as in the training set.
 | 
						|
    // missing        - missing values mask. missing=0 if there are no
 | 
						|
    //                   missing values in sample vector.
 | 
						|
    // weak_responses  - predictions of all of the trees.
 | 
						|
    //                   not implemented (!)
 | 
						|
    // slice           - part of the ensemble used for prediction.
 | 
						|
    //                   slice = CV_WHOLE_SEQ when all trees are used.
 | 
						|
    // k               - number of ensemble used.
 | 
						|
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
 | 
						|
    //                   in the case of classification problem
 | 
						|
    //                   <count of output classes-1> ensembles are built.
 | 
						|
    //                   If k = -1 ordinary prediction is the result,
 | 
						|
    //                   otherwise function gives the prediction of the
 | 
						|
    //                   k-th ensemble only.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // Predicted value.
 | 
						|
    */
 | 
						|
    virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | 
						|
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
 | 
						|
            int k=-1 ) const;
 | 
						|
 | 
						|
    /*
 | 
						|
    // Deletes all the data.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void clear();
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // OUTPUT
 | 
						|
    // delete data, weak, orig_response, sum_response,
 | 
						|
    //        weak_eval, subsample_train, subsample_test,
 | 
						|
    //        sample_idx, missing, lass_labels
 | 
						|
    // delta = 0.0
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    /*
 | 
						|
    // Compute error on the train/test set.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual float calc_error( CvMLData* _data, int type,
 | 
						|
    //        std::vector<float> *resp = 0 );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // data  - dataset
 | 
						|
    // type  - defines which error is to compute: train (CV_TRAIN_ERROR) or
 | 
						|
    //         test (CV_TEST_ERROR).
 | 
						|
    // OUTPUT
 | 
						|
    // resp  - vector of predicitons
 | 
						|
    // RESULT
 | 
						|
    // Error value.
 | 
						|
    */
 | 
						|
    virtual float calc_error( CvMLData* _data, int type,
 | 
						|
            std::vector<float> *resp = 0 );
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Write parameters of the gtb model and data. Write learned model.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void write( CvFileStorage* fs, const char* name ) const;
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // fs     - file storage to read parameters from.
 | 
						|
    // name   - model name.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void write( CvFileStorage* fs, const char* name ) const;
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Read parameters of the gtb model and data. Read learned model.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // fs     - file storage to read parameters from.
 | 
						|
    // node   - file node.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
 | 
						|
    // new-style C++ interface
 | 
						|
    CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
 | 
						|
              const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
              const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
              const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
              CvGBTreesParams params=CvGBTreesParams() );
 | 
						|
 | 
						|
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | 
						|
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | 
						|
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | 
						|
                       const cv::Mat& missingDataMask=cv::Mat(),
 | 
						|
                       CvGBTreesParams params=CvGBTreesParams(),
 | 
						|
                       bool update=false );
 | 
						|
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
 | 
						|
                           const cv::Range& slice = cv::Range::all(),
 | 
						|
                           int k=-1 ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    /*
 | 
						|
    // Compute the gradient vector components.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void find_gradient( const int k = 0);
 | 
						|
 | 
						|
    // INPUT
 | 
						|
    // k        - used for classification problem, determining current
 | 
						|
    //            tree ensemble.
 | 
						|
    // OUTPUT
 | 
						|
    // changes components of data->responses
 | 
						|
    // which correspond to samples used for training
 | 
						|
    // on the current step.
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void find_gradient( const int k = 0);
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Change values in tree leaves according to the used loss function.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void change_values(CvDTree* tree, const int k = 0);
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // tree      - decision tree to change.
 | 
						|
    // k         - used for classification problem, determining current
 | 
						|
    //             tree ensemble.
 | 
						|
    // OUTPUT
 | 
						|
    // changes 'value' fields of the trees' leaves.
 | 
						|
    // changes sum_response_tmp.
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void change_values(CvDTree* tree, const int k = 0);
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Find optimal constant prediction value according to the used loss
 | 
						|
    // function.
 | 
						|
    // The goal is to find a constant which gives the minimal summary loss
 | 
						|
    // on the _Idx samples.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual float find_optimal_value( const CvMat* _Idx );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // _Idx        - indices of the samples from the training set.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // optimal constant value.
 | 
						|
    */
 | 
						|
    virtual float find_optimal_value( const CvMat* _Idx );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Randomly split the whole training set in two parts according
 | 
						|
    // to params.portion.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void do_subsample();
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // OUTPUT
 | 
						|
    // subsample_train - indices of samples used for training
 | 
						|
    // subsample_test  - indices of samples used for test
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void do_subsample();
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Internal recursive function giving an array of subtree tree leaves.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // node         - current leaf.
 | 
						|
    // OUTPUT
 | 
						|
    // count        - count of leaves in the subtree.
 | 
						|
    // leaves       - array of pointers to leaves.
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Get leaves of the tree.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // dtree            - decision tree.
 | 
						|
    // OUTPUT
 | 
						|
    // len              - count of the leaves.
 | 
						|
    // RESULT
 | 
						|
    // CvDTreeNode**    - array of pointers to leaves.
 | 
						|
    */
 | 
						|
    CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Is it a regression or a classification.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // bool problem_type();
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    // false if it is a classification problem,
 | 
						|
    // true - if regression.
 | 
						|
    */
 | 
						|
    virtual bool problem_type() const;
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Write parameters of the gtb model.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // fs           - file storage to write parameters to.
 | 
						|
    // OUTPUT
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    //
 | 
						|
    // Read parameters of the gtb model and data.
 | 
						|
    //
 | 
						|
    // API
 | 
						|
    // virtual void read_params( CvFileStorage* fs );
 | 
						|
    //
 | 
						|
    // INPUT
 | 
						|
    // fs           - file storage to read parameters from.
 | 
						|
    // OUTPUT
 | 
						|
    // params       - parameters of the gtb model.
 | 
						|
    // data         - contains information about the structure
 | 
						|
    //                of the data set (count of variables,
 | 
						|
    //                their types, etc.).
 | 
						|
    // class_labels - output class labels map.
 | 
						|
    // RESULT
 | 
						|
    */
 | 
						|
    virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
 | 
						|
    int get_len(const CvMat* mat) const;
 | 
						|
 | 
						|
 | 
						|
    CvDTreeTrainData* data;
 | 
						|
    CvGBTreesParams params;
 | 
						|
 | 
						|
    CvSeq** weak;
 | 
						|
    CvMat* orig_response;
 | 
						|
    CvMat* sum_response;
 | 
						|
    CvMat* sum_response_tmp;
 | 
						|
    CvMat* sample_idx;
 | 
						|
    CvMat* subsample_train;
 | 
						|
    CvMat* subsample_test;
 | 
						|
    CvMat* missing;
 | 
						|
    CvMat* class_labels;
 | 
						|
 | 
						|
    cv::RNG* rng;
 | 
						|
 | 
						|
    int class_count;
 | 
						|
    float delta;
 | 
						|
    float base_value;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                              Artificial Neural Networks (ANN)                          *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
 | 
						|
 | 
						|
struct CvANN_MLP_TrainParams
 | 
						|
{
 | 
						|
    CvANN_MLP_TrainParams();
 | 
						|
    CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
 | 
						|
                           double param1, double param2=0 );
 | 
						|
    ~CvANN_MLP_TrainParams();
 | 
						|
 | 
						|
    enum { BACKPROP=0, RPROP=1 };
 | 
						|
 | 
						|
    CV_PROP_RW CvTermCriteria term_crit;
 | 
						|
    CV_PROP_RW int train_method;
 | 
						|
 | 
						|
    // backpropagation parameters
 | 
						|
    CV_PROP_RW double bp_dw_scale, bp_moment_scale;
 | 
						|
 | 
						|
    // rprop parameters
 | 
						|
    CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class CvANN_MLP : public CvStatModel
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_WRAP CvANN_MLP();
 | 
						|
    CvANN_MLP( const CvMat* layerSizes,
 | 
						|
               int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | 
						|
               double fparam1=0, double fparam2=0 );
 | 
						|
 | 
						|
    virtual ~CvANN_MLP();
 | 
						|
 | 
						|
    virtual void create( const CvMat* layerSizes,
 | 
						|
                         int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | 
						|
                         double fparam1=0, double fparam2=0 );
 | 
						|
 | 
						|
    virtual int train( const CvMat* inputs, const CvMat* outputs,
 | 
						|
                       const CvMat* sampleWeights, const CvMat* sampleIdx=0,
 | 
						|
                       CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
 | 
						|
                       int flags=0 );
 | 
						|
    virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;
 | 
						|
 | 
						|
    CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
 | 
						|
              int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | 
						|
              double fparam1=0, double fparam2=0 );
 | 
						|
 | 
						|
    CV_WRAP virtual void create( const cv::Mat& layerSizes,
 | 
						|
                        int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | 
						|
                        double fparam1=0, double fparam2=0 );
 | 
						|
 | 
						|
    CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
 | 
						|
                      const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
 | 
						|
                      CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
 | 
						|
                      int flags=0 );
 | 
						|
 | 
						|
    CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;
 | 
						|
 | 
						|
    CV_WRAP virtual void clear();
 | 
						|
 | 
						|
    // possible activation functions
 | 
						|
    enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
 | 
						|
 | 
						|
    // available training flags
 | 
						|
    enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
 | 
						|
 | 
						|
    virtual void read( CvFileStorage* fs, CvFileNode* node );
 | 
						|
    virtual void write( CvFileStorage* storage, const char* name ) const;
 | 
						|
 | 
						|
    int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
 | 
						|
    const CvMat* get_layer_sizes() { return layer_sizes; }
 | 
						|
    double* get_weights(int layer)
 | 
						|
    {
 | 
						|
        return layer_sizes && weights &&
 | 
						|
            (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
 | 
						|
            const CvMat* _sample_weights, const CvMat* sampleIdx,
 | 
						|
            CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );
 | 
						|
 | 
						|
    // sequential random backpropagation
 | 
						|
    virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
 | 
						|
 | 
						|
    // RPROP algorithm
 | 
						|
    virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
 | 
						|
 | 
						|
    virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
 | 
						|
    virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
 | 
						|
                                 double _f_param1=0, double _f_param2=0 );
 | 
						|
    virtual void init_weights();
 | 
						|
    virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
 | 
						|
    virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
 | 
						|
    virtual void calc_input_scale( const CvVectors* vecs, int flags );
 | 
						|
    virtual void calc_output_scale( const CvVectors* vecs, int flags );
 | 
						|
 | 
						|
    virtual void write_params( CvFileStorage* fs ) const;
 | 
						|
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | 
						|
 | 
						|
    CvMat* layer_sizes;
 | 
						|
    CvMat* wbuf;
 | 
						|
    CvMat* sample_weights;
 | 
						|
    double** weights;
 | 
						|
    double f_param1, f_param2;
 | 
						|
    double min_val, max_val, min_val1, max_val1;
 | 
						|
    int activ_func;
 | 
						|
    int max_count, max_buf_sz;
 | 
						|
    CvANN_MLP_TrainParams params;
 | 
						|
    cv::RNG* rng;
 | 
						|
};
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                           Auxilary functions declarations                              *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
 | 
						|
   average row vector, <cov> - symmetric covariation matrix */
 | 
						|
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
 | 
						|
                           CvRNG* rng CV_DEFAULT(0) );
 | 
						|
 | 
						|
/* Generates sample from gaussian mixture distribution */
 | 
						|
CVAPI(void) cvRandGaussMixture( CvMat* means[],
 | 
						|
                               CvMat* covs[],
 | 
						|
                               float weights[],
 | 
						|
                               int clsnum,
 | 
						|
                               CvMat* sample,
 | 
						|
                               CvMat* sampClasses CV_DEFAULT(0) );
 | 
						|
 | 
						|
#define CV_TS_CONCENTRIC_SPHERES 0
 | 
						|
 | 
						|
/* creates test set */
 | 
						|
CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
 | 
						|
                 int num_samples,
 | 
						|
                 int num_features,
 | 
						|
                 CvMat** responses,
 | 
						|
                 int num_classes, ... );
 | 
						|
 | 
						|
/****************************************************************************************\
 | 
						|
*                                      Data                                             *
 | 
						|
\****************************************************************************************/
 | 
						|
 | 
						|
#define CV_COUNT     0
 | 
						|
#define CV_PORTION   1
 | 
						|
 | 
						|
struct CvTrainTestSplit
 | 
						|
{
 | 
						|
    CvTrainTestSplit();
 | 
						|
    CvTrainTestSplit( int train_sample_count, bool mix = true);
 | 
						|
    CvTrainTestSplit( float train_sample_portion, bool mix = true);
 | 
						|
 | 
						|
    union
 | 
						|
    {
 | 
						|
        int count;
 | 
						|
        float portion;
 | 
						|
    } train_sample_part;
 | 
						|
    int train_sample_part_mode;
 | 
						|
 | 
						|
    bool mix;
 | 
						|
};
 | 
						|
 | 
						|
class CvMLData
 | 
						|
{
 | 
						|
public:
 | 
						|
    CvMLData();
 | 
						|
    virtual ~CvMLData();
 | 
						|
 | 
						|
    // returns:
 | 
						|
    // 0 - OK
 | 
						|
    // -1 - file can not be opened or is not correct
 | 
						|
    int read_csv( const char* filename );
 | 
						|
 | 
						|
    const CvMat* get_values() const;
 | 
						|
    const CvMat* get_responses();
 | 
						|
    const CvMat* get_missing() const;
 | 
						|
 | 
						|
    void set_header_lines_number( int n );
 | 
						|
    int get_header_lines_number() const;
 | 
						|
 | 
						|
    void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
 | 
						|
                                      // if idx < 0 there will be no response
 | 
						|
    int get_response_idx() const;
 | 
						|
 | 
						|
    void set_train_test_split( const CvTrainTestSplit * spl );
 | 
						|
    const CvMat* get_train_sample_idx() const;
 | 
						|
    const CvMat* get_test_sample_idx() const;
 | 
						|
    void mix_train_and_test_idx();
 | 
						|
 | 
						|
    const CvMat* get_var_idx();
 | 
						|
    void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
 | 
						|
                                               // use change_var_idx
 | 
						|
    void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor
 | 
						|
 | 
						|
    const CvMat* get_var_types();
 | 
						|
    int get_var_type( int var_idx ) const;
 | 
						|
    // following 2 methods enable to change vars type
 | 
						|
    // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
 | 
						|
    // with numerical labels; in the other cases var types are correctly determined automatically
 | 
						|
    void set_var_types( const char* str );  // str examples:
 | 
						|
                                            // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
 | 
						|
                                            // "cat", "ord" (all vars are categorical/ordered)
 | 
						|
    void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }
 | 
						|
 | 
						|
    void set_delimiter( char ch );
 | 
						|
    char get_delimiter() const;
 | 
						|
 | 
						|
    void set_miss_ch( char ch );
 | 
						|
    char get_miss_ch() const;
 | 
						|
 | 
						|
    const std::map<cv::String, int>& get_class_labels_map() const;
 | 
						|
 | 
						|
protected:
 | 
						|
    virtual void clear();
 | 
						|
 | 
						|
    void str_to_flt_elem( const char* token, float& flt_elem, int& type);
 | 
						|
    void free_train_test_idx();
 | 
						|
 | 
						|
    char delimiter;
 | 
						|
    char miss_ch;
 | 
						|
    //char flt_separator;
 | 
						|
 | 
						|
    CvMat* values;
 | 
						|
    CvMat* missing;
 | 
						|
    CvMat* var_types;
 | 
						|
    CvMat* var_idx_mask;
 | 
						|
 | 
						|
    CvMat* response_out; // header
 | 
						|
    CvMat* var_idx_out; // mat
 | 
						|
    CvMat* var_types_out; // mat
 | 
						|
 | 
						|
    int header_lines_number;
 | 
						|
 | 
						|
    int response_idx;
 | 
						|
 | 
						|
    int train_sample_count;
 | 
						|
    bool mix;
 | 
						|
 | 
						|
    int total_class_count;
 | 
						|
    std::map<cv::String, int> class_map;
 | 
						|
 | 
						|
    CvMat* train_sample_idx;
 | 
						|
    CvMat* test_sample_idx;
 | 
						|
    int* sample_idx; // data of train_sample_idx and test_sample_idx
 | 
						|
 | 
						|
    cv::RNG* rng;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
namespace cv
 | 
						|
{
 | 
						|
 | 
						|
typedef CvStatModel StatModel;
 | 
						|
typedef CvParamGrid ParamGrid;
 | 
						|
typedef CvNormalBayesClassifier NormalBayesClassifier;
 | 
						|
typedef CvKNearest KNearest;
 | 
						|
typedef CvSVMParams SVMParams;
 | 
						|
typedef CvSVMKernel SVMKernel;
 | 
						|
typedef CvSVMSolver SVMSolver;
 | 
						|
typedef CvSVM SVM;
 | 
						|
typedef CvDTreeParams DTreeParams;
 | 
						|
typedef CvMLData TrainData;
 | 
						|
typedef CvDTree DecisionTree;
 | 
						|
typedef CvForestTree ForestTree;
 | 
						|
typedef CvRTParams RandomTreeParams;
 | 
						|
typedef CvRTrees RandomTrees;
 | 
						|
typedef CvERTreeTrainData ERTreeTRainData;
 | 
						|
typedef CvForestERTree ERTree;
 | 
						|
typedef CvERTrees ERTrees;
 | 
						|
typedef CvBoostParams BoostParams;
 | 
						|
typedef CvBoostTree BoostTree;
 | 
						|
typedef CvBoost Boost;
 | 
						|
typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
 | 
						|
typedef CvANN_MLP NeuralNet_MLP;
 | 
						|
typedef CvGBTreesParams GradientBoostingTreeParams;
 | 
						|
typedef CvGBTrees GradientBoostingTrees;
 | 
						|
 | 
						|
template<> void DefaultDeleter<CvDTreeSplit>::operator ()(CvDTreeSplit* obj) const;
 | 
						|
}
 | 
						|
 | 
						|
#endif // __cplusplus
 | 
						|
#endif // __OPENCV_ML_HPP__
 | 
						|
 | 
						|
/* End of file. */
 |