262 lines
7.5 KiB
C
262 lines
7.5 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int dlaed9_(integer *k, integer *kstart, integer *kstop,
|
|
integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
|
|
rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
doublereal temp;
|
|
extern doublereal dnrm2_(integer *, doublereal *, integer *);
|
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *), dlaed4_(integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *, integer *);
|
|
extern doublereal dlamc3_(doublereal *, doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAED9 finds the roots of the secular equation, as defined by the */
|
|
/* values in D, Z, and RHO, between KSTART and KSTOP. It makes the */
|
|
/* appropriate calls to DLAED4 and then stores the new matrix of */
|
|
/* eigenvectors for use in calculating the next level of Z vectors. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* K (input) INTEGER */
|
|
/* The number of terms in the rational function to be solved by */
|
|
/* DLAED4. K >= 0. */
|
|
|
|
/* KSTART (input) INTEGER */
|
|
/* KSTOP (input) INTEGER */
|
|
/* The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */
|
|
/* are to be computed. 1 <= KSTART <= KSTOP <= K. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of rows and columns in the Q matrix. */
|
|
/* N >= K (delation may result in N > K). */
|
|
|
|
/* D (output) DOUBLE PRECISION array, dimension (N) */
|
|
/* D(I) contains the updated eigenvalues */
|
|
/* for KSTART <= I <= KSTOP. */
|
|
|
|
/* Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N) */
|
|
|
|
/* LDQ (input) INTEGER */
|
|
/* The leading dimension of the array Q. LDQ >= max( 1, N ). */
|
|
|
|
/* RHO (input) DOUBLE PRECISION */
|
|
/* The value of the parameter in the rank one update equation. */
|
|
/* RHO >= 0 required. */
|
|
|
|
/* DLAMDA (input) DOUBLE PRECISION array, dimension (K) */
|
|
/* The first K elements of this array contain the old roots */
|
|
/* of the deflated updating problem. These are the poles */
|
|
/* of the secular equation. */
|
|
|
|
/* W (input) DOUBLE PRECISION array, dimension (K) */
|
|
/* The first K elements of this array contain the components */
|
|
/* of the deflation-adjusted updating vector. */
|
|
|
|
/* S (output) DOUBLE PRECISION array, dimension (LDS, K) */
|
|
/* Will contain the eigenvectors of the repaired matrix which */
|
|
/* will be stored for subsequent Z vector calculation and */
|
|
/* multiplied by the previously accumulated eigenvectors */
|
|
/* to update the system. */
|
|
|
|
/* LDS (input) INTEGER */
|
|
/* The leading dimension of S. LDS >= max( 1, K ). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > 0: if INFO = 1, an eigenvalue did not converge */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Jeff Rutter, Computer Science Division, University of California */
|
|
/* at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1;
|
|
q -= q_offset;
|
|
--dlamda;
|
|
--w;
|
|
s_dim1 = *lds;
|
|
s_offset = 1 + s_dim1;
|
|
s -= s_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*k < 0) {
|
|
*info = -1;
|
|
} else if (*kstart < 1 || *kstart > max(1,*k)) {
|
|
*info = -2;
|
|
} else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
|
|
*info = -3;
|
|
} else if (*n < *k) {
|
|
*info = -4;
|
|
} else if (*ldq < max(1,*k)) {
|
|
*info = -7;
|
|
} else if (*lds < max(1,*k)) {
|
|
*info = -12;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DLAED9", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*k == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
|
|
/* be computed with high relative accuracy (barring over/underflow). */
|
|
/* This is a problem on machines without a guard digit in */
|
|
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
|
|
/* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
|
|
/* which on any of these machines zeros out the bottommost */
|
|
/* bit of DLAMDA(I) if it is 1; this makes the subsequent */
|
|
/* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
|
|
/* occurs. On binary machines with a guard digit (almost all */
|
|
/* machines) it does not change DLAMDA(I) at all. On hexadecimal */
|
|
/* and decimal machines with a guard digit, it slightly */
|
|
/* changes the bottommost bits of DLAMDA(I). It does not account */
|
|
/* for hexadecimal or decimal machines without guard digits */
|
|
/* (we know of none). We use a subroutine call to compute */
|
|
/* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
|
|
/* this code. */
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
|
|
/* L10: */
|
|
}
|
|
|
|
i__1 = *kstop;
|
|
for (j = *kstart; j <= i__1; ++j) {
|
|
dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
|
|
info);
|
|
|
|
/* If the zero finder fails, the computation is terminated. */
|
|
|
|
if (*info != 0) {
|
|
goto L120;
|
|
}
|
|
/* L20: */
|
|
}
|
|
|
|
if (*k == 1 || *k == 2) {
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *k;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
goto L120;
|
|
}
|
|
|
|
/* Compute updated W. */
|
|
|
|
dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);
|
|
|
|
/* Initialize W(I) = Q(I,I) */
|
|
|
|
i__1 = *ldq + 1;
|
|
dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
|
|
i__1 = *k;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
|
|
/* L50: */
|
|
}
|
|
i__2 = *k;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
|
|
/* L60: */
|
|
}
|
|
/* L70: */
|
|
}
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d__1 = sqrt(-w[i__]);
|
|
w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);
|
|
/* L80: */
|
|
}
|
|
|
|
/* Compute eigenvectors of the modified rank-1 modification. */
|
|
|
|
i__1 = *k;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *k;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
|
|
/* L90: */
|
|
}
|
|
temp = dnrm2_(k, &q[j * q_dim1 + 1], &c__1);
|
|
i__2 = *k;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
|
|
/* L100: */
|
|
}
|
|
/* L110: */
|
|
}
|
|
|
|
L120:
|
|
return 0;
|
|
|
|
/* End of DLAED9 */
|
|
|
|
} /* dlaed9_ */
|