145 lines
3.9 KiB
C

#include "clapack.h"
/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, k;
doublereal aii;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *), dlarfg_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGELQ2 computes an LQ factorization of a real m by n matrix A: */
/* A = L * Q. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, the elements on and below the diagonal of the array */
/* contain the m by min(m,n) lower trapezoidal matrix L (L is */
/* lower triangular if m <= n); the elements above the diagonal, */
/* with the array TAU, represent the orthogonal matrix Q as a */
/* product of elementary reflectors (see Further Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (M) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(k) . . . H(2) H(1), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */
/* and tau in TAU(i). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGELQ2", &i__1);
return 0;
}
k = min(*m,*n);
i__1 = k;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */
i__2 = *n - i__ + 1;
/* Computing MIN */
i__3 = i__ + 1;
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* a_dim1]
, lda, &tau[i__]);
if (i__ < *m) {
/* Apply H(i) to A(i+1:m,i:n) from the right */
aii = a[i__ + i__ * a_dim1];
a[i__ + i__ * a_dim1] = 1.;
i__2 = *m - i__;
i__3 = *n - i__ + 1;
dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
a[i__ + i__ * a_dim1] = aii;
}
/* L10: */
}
return 0;
/* End of DGELQ2 */
} /* dgelq2_ */